
Towards a rigorous methodology for verification and accuracy 
assessment of qualitative wildlife habitat models. 
 
Guidelines for qualitative habitat models, such as habitat suitability index models, 
emphasize the importance of verification and validation exercises as part of the model 
development and evaluation process.  However, guidelines for effective verification 
procedures are lacking.  Several factors associated with verification, including random 
versus targeted sampling, sample size requirements, analysis scale, field methods, 
personnel qualifications, and methods of comparing model predictions to field data can 
dramatically affect study design and interpretation of results.  In this paper I discuss key 
issues associated with each of these factors and provide methods and guidance to assist 
others in the development of effective verification projects.  I focus on verification using 
field ratings by species experts but these guidelines can be adapted to other types of 
verification data, such as index or sign data.   
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Introduction 
Qualitative wildlife habitat habitat models are commonly used to aid in 

management and conservation actions, including species reintroductions (e.g. Olsson and 

Rogers 2009), inventory of rare species (Cameron and Neily 2008), habitat risk 

assessment (Grech and Marsh 2008), species invasions (Williams et al. 2008), and land 

management (Marcot et al. 2001).  Probably the most common type of qualitative model 

is the Habitat Suitability Index (HSI) model (United States Fish and Wildlife Service 

1981).  Simple look-up tables, which assign a suitability rating to specific combination of 

environmental variable conditions, such as forest type and seral stage, are another 

example (Resource Inventory Standards Committee 1999).  Bayesian belief networks 

(BBNs) are also emerging as a popular tool for a suite of ecological modeling situations, 

including habitat modeling (Marcot et al. 2006).  These types of habitat models are all 

considered to be qualitative because some aspect of the model is driven by expert 

judgement.  In the case of HSIs and BBNs, expert judgement is often applied to three 

specific aspects of the model: 1) selection of environmental variables to include in the 

model, 2) development of suitability ratings curves for each environmental variables, and 

3) combination of those variable ratings via a mathematical equation, or set of beliefs, to 

produce an overall model rating.   
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Guidelines for qualitative wildlife habitat models, notably HSI models, emphasize 

the importance of model testing via verification and validation exercises (e.g. Brooks 

1997; Roloff and Kernohan 1999).  And, by naïve practioners, often interchangeably. The 

exact definition of, or differences between, verification and validation are often unclear 

and sometimes the terms are used interchangeably.  I define verification as a test of 

model performance using independent samples of indirect sign (e.g. scat for a foraging 

model) or field ratings by a species expert.  I define validation as a test of model 

performance using independent samples of actual density estimates of, or frequency of 

use by, the species of interest.  Although preferred, validation exercises may not be 

possible within the timeframes or budgets of planning or management initiatives, or due 

to low occurrence or detectability of the species of interest, and verification is the only 

feasible type of model testing available.  Also, if validation data are anticipated to be 

available, one may want to forego a qualitative model and use the empirical data to derive 

a quantitative model, such as a resource selection function (Manly et al. 2002).   

Although guidance for validation exercises have been developed (Roloff and 

Kernohan 1999), guidelines for developing and implementing effective verification 

projects are lacking.  Several factors associated with verification, including random 

versus targeted sampling, sample size requirements, analysis scale, field methods, 

personnel qualifications, and analyses for comparing model predictions to field data can 

dramatically affect study design and interpretation of results.  In this paper I discuss key 

issues associated with each of these aspects and provide methods and recommendations 

to assist others in the development of effective verification projects.  I focus on 

verification using field ratings by species experts but these guidelines can be adapted to 

other types of verification data, such as index or sign data.  Using the approach outlined 

here a typical verification project could be completed in approximately one month, 

including study design and sample plan development, field sampling, and data analysis 

and reporting.  

 

Goals of Verification 
Generally, there are two primary goals associated with verification exercises.  The 

first is to provide a quantitative estimate of model performance.  This involves comparing 
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model predictions to an independent sample of field data, such as suitability ratings 

assessed by a species expert.  The second general goal of verification is to collect 

environmental data at each sample site to help evaluate and refine the model.  More 

specifically, the environmental data can be used to 1) quantify errors and biases of GIS 

layers used in the model, 2) verify assumed relationships between GIS variables, used in 

the model as proxies, and primary variables or conditions in the field, and 3) provide a 

basis for adjusting variable rating curves in the model.   

 

Accuracy Assessment versus Model Evaluation 
Model performance can be assessed from two perspectives depending on whether 

the primary goal is 1) to assess the overall accuracy of the model predictions across a 

specific study area, which I define in this paper as accuracy assessment, or 2) to assess 

how well the model performs with respect to specific combinations of environmental 

conditions, which I define as model evaluation.  To be clear with terminology through the 

remainder of this document, I explicitly use the terms accuracy assessment and model 

evaluation when discussing factors where implications differ between the two types of 

model assessment perspectives and I use the term verification when discussing factors 

that relate to both perspectives.   

Depending on which of these model assessment perspectives is the primary 

objective, a fundamentally different sampling scheme should be used, and different 

estimates of model performance will result.  Where the primary goal of model 

verification is accuracy assessment, the sampling scheme should select a sample of 

habitat types that is representative of the proportion of model predictions across the study 

area.  Where the primary goal is model evaluation, the sampling design may be stratified, 

or arbitrarily assigned, to obtain a certain proportion of samples across a range of 

combinations of environmental conditions, irrespective of their occurrence in the study 

area.   

To illustrate the potential differences of these two perspectives, consider a 2-class 

habitat model where coniferous=suitable, deciduous=unsuitable and where the model 

predicted 20% the study area was suitable and 80% was unsuitable.  Assume true model 

accuracy is 50% for suitable and 100% for unsuitable.  If accuracy assessment was the 
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primary objective and a proportional sample was drawn for 50 field samples, the number 

of samples in suitable and unsuitable areas would be approximately 10 and 40, 

respectively, and the corresponding model performance score would be 

10/50*0.5+40/50*1.0=90%.  If model evaluation was the primary objective, a reasonable 

sample approach may be to have half of the samples in each habitat class and the model 

performance score would be 25/50*0.5+25/50*1.0=75%.  In this simple example the 

model evaluation sample could be adjusted to provide an overall accuracy assessment 

using a simple weighted average of model predictions.  However, with a real model that 

contained several continuous and/or multi-class categorical environmental variables it 

may be difficult or impossible to adjust the overall accuracy estimate using weighted 

averages. 

Sampling Design  
The sampling schemes normally associated with accuracy assessment and model 

evaluation objectives are random and targeted, respectively.  By targeted, or purposive, 

sampling I mean sampling that examines specific combinations of underlying 

environmental data.  Many combinations of environmental data conditions occur 

infrequently and are unlikely to be sampled under a random sampling design.  

Traditionally, field calibration and verification of habitat models has used targeted 

sampling to ensure that a broad range of base data conditions are examined.  This can 

often result in a strongly biased sample with respect to the proportional occurrence of 

those conditions across the project area.  Rare conditions tend to be over sampled relative 

to their proportional occurrence and common conditions tend to be under sampled 

(Congalton and Green 2009).  A fundamental requirement of obtaining a statistically 

unbiased estimate of overall model accuracy is that a random sample of model outputs is 

taken.  Sampling random locations within stratified environmental conditions does not 

address this bias unless the sample is proportional to the extent of those conditions.  

Where project objectives include both accuracy assessment and model evaluation the 

appropriate approach is to draw a random sample to meet the accuracy assessment 

objectives, and supplement that with targeted sampling to meet model evaluation 

objectives.   
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In a large study area, or where access is poor, a completely random sample could 

result in exorbitant travel costs among widely dispersed sites.  A clustered, random 

design may be employed to reduce travel costs among sample units, however, care must 

be taken to ensure the clustering parameters do not bias either the random aspect or the 

representativeness of the sample.  If sample units are not far enough apart  

Often a clustered-random sample is desirable for logistic reasons and is 

acceptable so long as the clustering does not bias the representativeness of the sample.  

For example, in a large study area, or where access is poor, a completely random sample 

could result in exorbitant travel costs among widely dispersed sites.  Choosing one 

random point first, as a cluster centre, then selecting additional random points within a 

specified distance, can result in much more efficient field sampling and still maintain the 

random sample design required to assess the overall accuracy of a model. 

Defining Project Scope 
Ideally, the entire study area should be available for accuracy assessment/model 

evaluation.  In some cases the extent may need to be reduced for logistic reasons, such as 

access (e.g. only areas within 5 km of a road may be considered for verification 

sampling).  In those cases the area of inference of the verification becomes limited and 

that limitation should be explicitly quantified and stated (i.e. sampled versus available 

proportions of key strata within the study area).   

In other cases, where a large part of the study area is unsuitable habitat that is 

classified with high certainty, that part of the project area should generally be excluded so 

that verification focuses on potentially suitable habitat.  For example, consider a nesting 

habitat model for a species of songbird inhabiting forest remnants in a landscape 

consisting of 90% cropland, and where it is known with high certainty that the species 

does not nest in cropland.  If a random sample was drawn and 90% of the samples were 

in cropland, the accuracy score of the model would likely be high, but largely 

uninformative.  Assuming the habitat model was developed primarily to assess relative 

nesting habitat quality with respect to forest remnant conditions, the forest remnants 

should be the focus of the assessment and cropland should be excluded.   
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Analysis Scale and Sample Unit Design 
Historically, habitat models were often applied using one type of input data – a 

polygon-based vegetation map.  With that type of map a polygon was an obvious sample 

unit and field assessment was relatively straightforward – single or multiple plots or 

transects could be established within polygons.   

Now, with widely accessible GIS, powerful computers, and a suite of digital 

environmental data, often available in both vector and raster formats (e.g. vegetation, 

soils, elevation, slope, aspect, and soil moisture), even a simple overlay of available input 

data can in a very complex base map.  If spatial variables, such as distance from edge, 

fragmentation metrics, or neighbourhood analysis, are included the complexity of map 

overlays increases even more, to the point where the functional map unit with unique 

environmental conditions essentially becomes an individual, or small number of, pixels.  

This creates a problem for field verification because spatial accuracy can become a 

substantial issue at the 25-100 m size of pixels commonly used in habitat models. 

Spatial accuracy issues result from at least three sources.  1)  Base habitat map 

layers have limited spatial accuracy associated with them.  The spatial accuracy of 

vector-based map data (line and polygon data such as roads, streams, and vegetation 

maps) is typically in the order of 25-50 m for 1:20,000 scale products and 50-100 m for 

1:50,000 scale products.  Raster-based data, such as digital elevation models (DEMs) 

often have specified accuracy of 25 m at 1:20,000 scale and 50 m at 1:50,000 scale.  2) 

Conversion of vector data to raster data results in spatial accuracy loss up to half the pixel 

size.  For example, if the boundary of a vegetation map polygon falls near the middle of 

100 m pixel, when it is converted to a raster file the entire pixel will be classified either 

as the reference polygon or its neighbour, according to a majority rule, effectively 

shifting the edge by approximately 50 m.  3) GPS errors typically range from 5-20 m, 

although differential correction can virtually eliminate these errors.   

In addition to spatial accuracy issues, heterogeneity associated with thematic map 

accuracy can become an issue when sampling at a finer resolution than the map unit.  For 

example, values of attributes associated with a polygon in a vegetation map are based on 

an average value or majority rule across the polygon.  If only a portion of the original 

polygon is surveyed, because overlays of multiple maps result in subdivision of the 
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vegetation map polygon, the attribute value for that portion of the subdivided polygon 

could be inaccurate, even though the attribute value was accurate for the original 

polygon.  For example, if polygon has an accurate canopy closure value of 60%, and that 

polygon is subdivided into four smaller polygons the true canopy closure in each of the 

new polygons could be 40%, 60%, 70% and 70%.   

The approach I recommend for dealing with this spatial accuracy issue is similar 

to a “small area” sampling design developed by Moon et al (2005) for assessing accuracy 

of ecosystem maps.  This method uses a sample unit that is several times larger than both 

the resolution of the map units (typically a pixel) and the estimated spatial accuracy of 

the least accurate input data layer.  Several subsamples are then taken within the sample 

unit, and field ratings and model predictions from the subsamples are compared aspatially 

within the sample unit (i.e. without maintaining subsample level comparison).  For 

example, consider a model with a rating scheme of suitable (1) and unsuitable (0) habitat, 

and a sample unit with four subsamples having field and model ratings of 0/1, 1/1, 0/0 

and 1/0.  In this case the sample unit level accuracy would be 100% because both model 

and field ratings contain two 0’s and two 1’s.  At the subsample level the accuracy would 

be 50% because two out of four of the subsamples have ratings that correspond.  The 

small area sampling approach assumes that both the field and model subsamples occur 

within the sample unit but, due to potential spatial accuracy errors, not necessarily at the 

exact subsample location that was targeted.  

Another important consideration for selecting sample unit size is that it should be 

smaller than the size of typical management units (e.g. forest cutblocks).  This is because 

interpretations related to the sample unit size cannot be confidently applied to a smaller 

resolution.  For example, a sample unit size of 10 ha may be appropriate for assessing 

habitat model accuracy relative to cutblocks that average 20 ha in size, but not to within-

cutblock forest retention patches that average 2 ha.  I view small area sampling as a 

surrogate for the traditional stand-scale polygon sampling approach, but in cases where 

polygons are not available, and generally recommend sample unit sizes of 5-30 ha.   

Circular or square sample unit shapes are preferred to account for the spatial 

accuracy problem.  A variety of systematic or random sampling designs may be used to 

establish subsamples within the sample units.  One efficient design is to use a circular 
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sample unit with subsamples along a triangular transect within the sample unit (Figure 1).  

This design provides reasonably good coverage of the sample unit and it is efficient to 

sample because the surveyor completes the transect near where they started.  Using a 

clustered random sampling design with a 5 km radius bounding sample units within the 

cluster, and a circular 10 ha sample unit surveyed using a 900 m triangular transect with 

subsample plots every 100 m, two or three sample units can be surveyed in a day by one 

field crew. 
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Figure 1.  Sample unit design for the small area sampling approach.  Shaded raster data is 

habitat suitability index model output classed into four categories.  
Heterogeneity of the habitat data, coupled with uncertainty of positional 
accuracy at the 100 m pixel scale, limits the use of sampling designs that target 
specific habitat types.   

 

Setting a Priori Accuracy Targets 
In most circumstances it is useful to establish an accuracy target that can be used as 

a benchmark to assess whether the model outputs are acceptable for specific management 
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or planning purposes or to determine whether model revisions are required.  Acceptable 

accuracy levels should be established before field verification is conducted to avoid biasing 

that decision by the field results.   

Setting accuracy targets is a subjective exercise and will depend on the intended 

uses of the model outputs and comfort levels of the biologists, mangers or planners using 

those outputs.  The appropriateness of accuracy targets also varies depending whether 

continuous or categorical scoring methods are used, and for categorical schemes, how 

many categories there are.  Accuracy scores tend to be higher using continuous schemes 

than categorical schemes.  For categorical schemes, accuracy scores will be higher the 

fewer the categories there are.  For accuracy assessments of one environmental variable 

mapped using remotely data, the longstanding, albeit arbitrary, standard has been 85% 

(Congalton and Green 2009).  When multiple variables are considered, as is usually the 

case with habitat models, classification errors typically compound in a multiplicative 

manner (Congalton and Green 2009).  As an example, a composite map of four 

environmental variables with thematic accuracy of 90% for each variable would be 

expected to have an overall accuracy of 0.94=66%.  Unless a habitat model collapses some 

of the categories for each variable, this compound accuracy represents the highest potential 

accuracy the model could have.  This factor alone emphasizes the importance of 

parsimonious model construction.  One example of an accuracy target for a model using 

multiple variables is 65% for predictive ecosystem mapping in British Columbia 

(Meidinger 2003).   

 

Sample Size Requirements 
The number of samples required to meet a specified confidence interval for 

accuracy assessment can be estimated using the conventional sample size formula: 

Sample size = (t-value)2 x (standard deviation)2 / (acceptable error)2  

Approximate sample sizes across a range of typical confidence levels, standard 

deviations, and acceptable errors are provided in Table 1.  The t-value is based on the a 

priori confidence level at n-1 degrees of freedom, where the degrees of freedom are a 

best guess at the required sample size.  For example, in the first cell in Table XX, using a 

90% confidence level and estimated sample size of 30, t0.10(2),30=1.697.  Thankfully, the 
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degrees of freedom have relatively little influence on the sample size estimates.  Again, 

for the first cell in Table 1, doubling the degrees of freedom to 60 changes the sample 

size estimate by less than one.   The standard deviation is that of the anticipated sample, 

and again a best guess must be input into the equation.  To account for uncertainty of the 

standard deviation it is often useful to consider a range of values, such as in Table 1.  

Acceptable error is the maximum difference that the sample mean can deviate from the 

true population mean before you call the difference significant.  This is a choice that 

should be made as part of the a priori decision about the acceptable accuracy target will 

be.  Typical values range from 5 to 10%, with smaller values being more conservative.   

 

Table 1.  Approximate sample size requirements for small area sampling accuracy 
assessment. 

Sample Variance (SD) Confidence 
level 

Sample 
Error 0.150 0.175 0.200 0.225 

0.9 0.05 26 35 46 59 
0.9 0.07 13 18 24 30 
0.9 0.09 8 11 14 18 
0.8 0.05 16 22 28 36 
0.8 0.07 8 11 14 18 
0.8 0.09 5 7 9 11 

 

To address the limitations of guessing at initial sample sizes and standard 

deviations to seed the sample size equation, above, Moon et al. (2005) recommended a 

staged field sample, where a major portion of the estimated sample size is surveyed, then 

the standard deviation of that sample is calculated and used to rerun the sample size 

estimate and determine how many additional samples are required to meet the desired 

confidence level.  The remaining samples must then be randomly selected again across 

the entire project area.  Although staged sampling is a preferred approach to ensure 

confidence levels are met, it has potentially serious logistical limitations of requiring a 

break during field work and, often, travel back to regions of the study area near where 

field sampling was already conducted.  In large study areas, or areas with poor access 

requiring aerial transportation, this may be prohibitively expensive.  As an alternative to 

staged sampling, it may be more cost effective to simply survey extra samples to ensure 

confidence levels are met. 
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In addition to meeting statistical requirements, consideration should also be given 

to ensure the sample size is adequate to provide a representative sample.  Types of 

representation should include the range of model outputs, the underlying environmental 

conditions, and geographic representation across the study area.  Generally, a minimum 

of 50 samples should be considered to meet basic objectives of representation (Congalton 

and Green 2009).  Again, it is often useful to supplement the random sample with 

targeted samples to ensure certain habitat variable combinations are met for model 

evaluation (but those additional samples should not be included for accuracy scoring). 

Sample size is normally determined for the entire study area and inferences from 

that sample cannot be extrapolated to portions of, or strata within, the study area, such as 

a certain biogeoclimatic zones, with statistical confidence.  If accuracy scores are desired 

at a finer level than the study area, sample sizes need to be calculated for each stratum or 

subregion of interest.  Because this can result in large sample sizes most accuracy 

assessments will, at least initially, be for the entire study area.    

 

Personnel Qualifications and Calibration 
I have already noted that using expert-opinion field ratings is generally a less 

desirable type of verification than using more objective data, such as an index of use of 

the species of interest, and it is important that experienced personnel and a rigorous rating 

procedure are used to minimize bias and variation associated with expert-opinion ratings.   

The following should be considered minimum qualifications for personnel 

conducting the field assessments.  1) Field personnel should have at least two seasons of 

field-related experience with the species-habitat relationship of interest.  No matter how 

familiar a biologist is with the literature, direct field experience is necessary to be able to 

accurately and reliably estimate habitat suitability.  2)  Field personnel should be familiar 

with local habitat use patterns, as well as the broader patterns of habitat use of the species 

across its range as documented in the literature.  I have seen cases where biologists with 

considerable experience working with a species in one location did a poor job of 

assessing habitat suitability in a different location because they were not familiar with the 

range of habitat use patterns the species exhibited across their range.   
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Whenever possible, the person or team who developed the model should be 

involved in the field verification.  The reason for this is that the verification exercise 

should be an assessment of how well a set of beliefs and assumptions, expressed as a 

model, reflect inferred habitat quality in the field using those same beliefs and 

assumptions.   

When multiple observers are used in the field, calibration is required to minimize 

observer bias and reduce variation in field ratings.  Three formal types of calibration 

exercises that should be conducted are: 1) review and discussion of the model 

assumptions and structure, local habitat use data, and broader habitat use patterns, 2) 

discussion and definition of typical suitability ratings found across the range of 

environmental variable conditions (essentially discussion of criteria in Appendix 1), and 

3) calibrations surveys by all personnel at the same plots to rationalize the 

implementation of criteria from 1 and 2 in the field, and to calibrate to similar field 

ratings.    

 

Reducing Model to Variables Assessable in the Field 
Many habitat models include spatial variables, such as distance to edge, or larger 

scale variables, such as patch size, that field personnel may not be able to perceive and 

assess effectively in the field.  Generally, when this occurs the field ratings should only 

be compared to a reduced version of the model that excludes any variables personnel are 

not able to assess in the field. 

In some cases the appropriateness of excluding certain variables will not be 

immediately clear and requires thoughtful review of the rationale for including the 

variable in the model and the type of information used to parameterize the ratings for that 

variable.  For example, consider distance to edge, which I used in a nesting habitat model 

for Northern Goshawks (Mahon et al. 2008).  The rationale for using this variable was 

that goshawks avoided locating nests near edges and I was able to parameterize a rating 

curve using 62 nest sites showing strong avoidance 0-100 m from an edge and moderate 

avoidance 100-200 m from an edge.  Edge was excluded from the model outputs 

compared to field verification ratings against for two reasons.  First, was that the 

observed use pattern did not correspond to obvious stand structure that could be assessed 
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in the field.  Possibly the use pattern was behaviourally driven, such as to reduce 

predation risk or inter-specific nest competition that might be higher near edges.  Second, 

it was difficult for field personnel to perceive edges greater than 30 m away due to thick 

forest vegetation.  In other circumstances a model may include distance from edge to 

account for a more direct habitat condition, such as reduced canopy cover due to 

windthrow.  Limitations to perceiving distances to edges would not be an issue because 

the primary condition of interest is change in canopy closure.  In that case it would be 

appropriate to include distance from edge in the model for comparison to field results.   

 

Field Sampling 
Rating Habitat Quality 

A key aspect of successfully using expert opinion ratings to verify a habitat model 

is to formalize and standardize the assumptions and criteria used to define ratings along a 

specified scale.  This exercise is critical to facilitating consistent ratings by the same 

individuals as well as among individuals.  Usually the foundation of this knowledge can 

be transferred from the rationale used to develop the habitat model.  In many cases, 

however, the variables used in a model may be surrogates of the primary variables of 

interest.  For example, amount of shrub cover may be a primary variable affecting habitat 

quality for a certain species of bird.  If shrub cover is not available in a GIS database, 

however, a surrogate, such as canopy closure, may be used in the habitat model.  Criteria 

for field ratings should be based on the variables most directly relating to habitat quality.  

As part of this exercise biologists also need to identify relationships among habitat 

attributes in contributing to overall habitat quality.  For example, do certain variables or 

conditions act in compensatory or non-compensatory ways in contributing to overall 

suitability?  Key ratings assumptions should be formally documented such as the example 

in Appendix 1.  Again, the purpose of this exercise is to formalize and standardize rating 

assumptions among field personnel. It should not be interpreted as a cookbook that non-

specialized personnel could use to derive a rating. 

Two types of rating schemes can be used in the field: 1) ordinal ratings (e.g. nil, 

low, moderate, high) or 2) continuous numerical ratings (e.g. 0 – 1).  Generally, the rating 

scheme used in the field should match the type of outputs from the habitat model.  
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Ordinal ratings are usually associated with simple decision-tree or look-up table type 

models (e.g. ecosystem by seral stage table).  Continuous numerical ratings usually result 

from any model where suitability ratings for multiple variables are combined via a 

mathematical equation (e.g. habitat suitability index models).   

Ordinal ratings are, perhaps, the most intuitive scheme.  In British Columbia, 

standards have been developed for qualitative, ordinal wildlife habitat ratings applied to 

ecological mapping projects (Resource Inventory Standards Committee 1999).  Many 

aspects of those guidelines are applicable to habitat model verification and biologists 

undertaking a verification project would benefit from reviewing those standards.  The 

number of habitat classes used in the field will generally be the same as the number of 

classes derived from the model, however, occasionally it may be useful to subdivide a 

class in the field to support model refinement.  One limitation with using ordinal ratings 

in the field is that estimated suitability often falls near a class break.  Field personnel 

must ultimately select the rating class that seems most appropriate, however, indicating 

the end of the class the suitability falls in may also help with model evaluation and 

refinement.   

A continuous rating scheme may seem more daunting to use initially, but has the 

advantage of not being constrained by arbitrary boundaries of categorical bins.  The 

approach I use when deciding on a rating is to first decide on the appropriate quartile (e.g. 

75-100), then decide on a more precise rating based on whether suitability is on the low, 

middle or high end of that quartile.  Measurement precision should also be specified as 

part of the study design.  Generally, I have found that five percent increments are a 

satisfactory increment to use.  The exception to this is when ratings may subsequently be 

categorized subsequent purposes.  When that may occur I add a rule that ratings cannot 

occur on class breaks (e.g. 25, 50, 75 for quartiles), and should be reduced or increased 

by one value (e.g. 74 or 76), as appropriate, to avoid the class break.  When in doubt I 

recommend using finer, rather than broader, increments to provide the maximum 

flexibility for accurately estimating suitability along a continuous scale.  In doing so, 

however, it is important to note that finer measurement precision does not imply finer 

precision or accuracy in a statistical sense.   
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It is a fundamental assumption that field estimates are, on average, accurate, but it 

is also important to recognize there is unknown, but not insignificant, variance associated 

with field ratings.  That variance results from a number of sources including observer 

bias, random individual variation, and imperfect habitat perception.  While we might be 

able to quantify components of that variance (e.g. observer bias) through study design 

and extra field work, it is probably impossible to quantify all of the variation associated 

with field ratings.   

Another important aspect of field ratings is that the assessment must be ‘blind’.  

That is field personnel should not know the map predictions for the area they are 

assessing.  Several studies have shown that bias results if observers know what the 

predicted classifications are (  ). 

 

Measuring Environmental Variables 
There are normally three objectives of measuring environmental variables in the 

field:  1) to verify assumed relationships between GIS variables used in the model as 

surrogates and the primary variables or conditions of interest in the field, 2) to quantify 

errors and biases in the GIS data, and 3) to develop or strengthen relationships between 

suitability and environmental conditions that provide a basis for revising variable rating 

curves in the model.  The relative importance of these objectives will influence the 

number and type of environmental variables examined and the level of detail at which 

they are assessed.  Under time or budget constrained projects I generally recommend an 

extensive versus intensive sampling approach that favours surveying more sample units, 

as opposed to surveying fewer sample units and measuring environmental attributes more 

precisely.  For example, a visual estimate of tree species composition and one 

measurement of stand height may be adequate to assess the general accuracy of forest 

cover data, and could be conducted in a fraction of the time it takes to conduct a fixed 

radius tree mensuration plot.   

 

Removing Samples with Incongruent Field and GIS Conditions 
In some cases field samples may occur on sites with recent anthropogenic or 

natural disturbance events (e.g. logging, road building, wildlife, windthrow, landslides) 
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that have not been updated in the base GIS data used in the habitat model.  Generally, 

using these samples is inappropriate for accuracy assessment or model evaluation 

because the field and model ratings are based on incongruous underlying habitat data and 

the samples should be culled prior to analysis.   

A related issue is when environmental conditions at a plot differ between the field 

measurements and GIS data as a result of thematic mapping errors or positional accuracy 

errors.  For accuracy assessment it is important to include these samples in the analysis 

because the accuracy of underlying data is a key factor affecting overall accuracy of 

model predictions.  For model evaluation, it is useful to run the analysis both with and 

without samples with disparate environmental conditions.  To evaluate true model 

performance (i.e. rating curves for individual variables and the way ratings from multiple 

variables are combined), only samples with agreement in the environmental conditions 

should be used.  However, the difference in model accuracy between the full and reduced 

samples provides an indication of how robust the model is to underlying environmental 

data errors.   

 

Accuracy Scoring Approaches 
Accuracy, by definition, is how close an estimate is to a true value.  For assessing 

the accuracy of habitat models we assume that field ratings are true values and that model 

outputs are estimates.  Different scoring methods are required for ordinal and continuous 

rating schemes.  Simple scoring procedures are provided below for each method.  These 

methods focus on quantifying the degree of  between field ratings and model predictions 

(i.e. effect size) in a form that can be compared to an a priori accuracy target.   

As previously mentioned, accuracy scores can be derived at the resolution of 

subsample, sample unit, and study area by maintaining or dissolving spatial dependencies 

of the model to field rating comparison at each resolution.  For example, at the subsample 

unit resolution model predictions and field observations are compared for the same 

subsample.  At the sample unit resolution model predictions and field observations for the 

subsamples are compared aspatially.  Again, the purpose of this is to address issues of 

spatial accuracy at the subsample level.  Although we have poor confidence that 

underlying data corresponds at the subsample level, we have much higher confidence at 
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the sample unit resolution.  Another way to put it is that we are confident that both the 

field and model subsamples occur within the sample unit, but we are not confident of 

exactly where they are within it.  At the study area resolution all spatial dependencies are 

dissolved.  Although I recommend that the primary focus should be on the sample unit 

scores, it is often informative to present accuracy scores at all three resolutions.   

Scoring for Ordinal Rating Schemes 
Accuracy scoring procedures for categorical or ordinal mapping products have 

been well developed in the geomatic disciplines (Congalton and Green 2009) and these 

methods can be applied to assessing categorical wildlife habitat models (Fielding and 

Bell 1997).  It is important to note that this approach considers accuracy as the proportion 

of times the model predictions correspond to the field observations, rather than the usual 

statistical definition of accuracy, which is how close an estimate is to the true value.   

The standard method for summarizing and scoring map or model predictions 

against field observations is using a confusion matrix.  A confusion matrix is a 

contingency table where field observations and model predictions are listed as column 

and row headings, respectively, and the numbers of samples corresponding to each 

combination are tallied in the cells (Table 2).  Overall accuracy is simply the proportion 

of corresponding observations (sum of the diagonal cells) relative to the number of 

samples.  A confusion matrix is also useful for assessing bias in model predictions.  The 

proportion of observations in cells above the diagonal cells represent false positives (i.e 

where the model is overestimating habitat quality) and the proportion of observations in 

cells below the diagonal represent false negatives (i.e. where the model is 

underestimating habitat quality).  See Fielding and Bell (1997) and Congalton and Green 

(2009) for a comprehensive description of several additional measures of accuracy and 

errors that can be estimated from a confusion matrix.  The Kappa statistic and ‘fuzzy’ 

accuracy assessment are two somewhat more sophisticated analysis techniques that are 

commonly used for categorical accuracy assessment (Congalton and Green 2009).  The 

Kappa statistic is a corrected version of the simple accuracy statistic, above, which takes 

to into account the likelihood of chance agreement within cells (Congalton et al. 1983).  

Fuzzy accuracy assessment gives full or partial score to map predictions that are within a 

certain number of classes (normally one) of the field data (Gopal and Woodcock 1994).   
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Table 2.  An example of a confusion matrix used to estimate the accuracy of categorical 
model data (after Congalton and Green 2009).   

   Field Data    
  Nil Low Moderate High Total 
 Nil 65 4 22 24 115 
Model  Low 6 81 5 8 100 
Data Moderate 0 11 85 19 115 
 High 4 7 3 90 104 
 Total 75 103 115 141 434 
 

Overall Accuracy = (65+81+85+90) / 434 = 74% 
False Positives = (4+22+24+5+8+19) / 434 = 19% 
False negatives = (6+0+4+11+7+3) / 434 = 7% 

 
 

One of the requirements for developing a confusion matrix is that paired samples 

of field observations and model predictions for the same sites are available.  Using the 

small area sampling approach outlined above, the original pairs of the model and field 

data at the subsample plots are not maintained and a normal confusion matrix cannot be 

developed.  However, the overall accuracy can still be calculated based on the number of 

corresponding ratings.  Examples of accuracy scoring at the subsample and sample unit 

levels for the same data are shown in Tables 5 and 6.  The overall accuracy score for the 

model is estimated as the mean of all the sample unit scores, and confidence intervals can 

be calculated using the mean and variance from the sample unit scores. 

Two approaches can be used to approximate model errors for the sample unit.  

One is to create a confusion matrix using all of the subsample level data (where pairing is 

maintained) and assume the ratio of false positives and false negatives is similar for the 

sample unit level data.  The second approach is to independently order the field 

observations and model predictions within each sample unit and use the new rank order 

pairs to build a confusion matrix.  Using the small area sampling approach, the overall 

accuracy of the model is estimated by the mean of the sample unit scores and the variance 

of the scores can be used to derive confidence intervals.   
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Table 3.  Example accuracy scoring using a four class rating scheme at the subsample 
level, which maintains explicit plot-level comparisons of model predictions and 
field ratings.   

SampleID Field 
Rating 

Model 
Rating 

Field 
Class 

Model 
Class 

Subsample 
Score 

T1-1 0.90 1.00 H H 1 
T1-2 0.90 1.00 H H 1 
T1-3 0.00 1.00 N H 0 
T1-4 1.00 0.00 H N 0 
T1-5 0.55 0.45 M L 0 
T1-6 0.70 0.675 M M 1 
T1-7 0.45 0.675 L M 0 
T1-8 0.30 0.45 L L 1 
T1-9 0.45 1.00 L H 0 

    Total 4/9=44% 
 
Table 4.  Example accuracy scoring summary for the same data from Table 5, at the 

sample unit level, assessing the correspondence of field and model data 
aspatially within the sample unit.   

Rating 
Class 

Number of corresponding 
model and field ratings 

H 3 
M 2 
L 2 
N 1 
 Score = 8/9 = 89% 

 
 

 

Scoring for Continuous Numerical Rating Schemes 
While scoring techniques are well developed for categorical data, methods for 

comparing the accuracy of continuous data are poorly developed, at least by comparison.  

The prevalent approach has been to simply categorize the continuous data into bins.  For 

example using 0-1 model outputs from a logistic regression equation and classifying 

values >0.5 as presence, and values <0.5 as absence (e.g. Johnson .  There are several 

unsatisfactory results of this approach.  1) Substantial information is lost, notably 

precision of the estimates, by collapsing a continuous value into a categorical bin (Boone 

and Krohn 2002).  2)  Classifying continuous values creates arbitrary ‘breaks’ across the 

range 
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For continuous ratings on a bounded scale (e.g. 0-100) I recommend using the 

following equation to score individual samples: 

Accuracy = 1001 - |model rating – field rating|  

When comparing a model prediction to a field score it is intuitive that the difference 

between the values is a measure of the degree of disagreement, or inaccuracy, between 

them.  One minus that difference represents the degree of agreement, or accuracy, 

between them (Figure 2).  To help understand this idea, consider suitability as a 

continuum from nil to optimal conditions.  Any point along that continuum represents 

both how much better suitability is than nil, and how much worse suitability is than 

optimal.  In this context accuracy can be viewed as how much of the continuum is outside 

of the two rating estimates.  In the example in Figure 2, both the field rating and model 

prediction are in agreement that suitability is greater than 75 and also that suitability is 

less than 90.  100-|90-75| = 85% accuracy.  

 

Field 
Rating

Model
Rating

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
1

Habitat Suitability

degree of agreement or 'accuracy'

 
Figure 2.  Rationale for accuracy scoring approach using a continuous rating scheme.  

Both the model and field ratings are in agreement that suitability is greater than 
75 and less than 90.  75+10=85% accuracy.   

 
 

To derive sample unit scores, subsample ratings are considered aspatially within 

each sample unit, similar to the ordinal rating scoring example.  Field and model ratings 

should be ranked independently and then the re-ordered rank pairs are scored using the 

above equation.  Example scoring summaries for one sample unit are shown below in 

Tables 4 and 5 at sub-sample and sample unit levels, respectively.  Again, the mean of 

                                                 
1 Assuming the scale is standardized to 100 



sample unit scores can be used to estimate overall model score.  Model bias can be 

examined by summarizing the average differences of the samples units.  If the differences 

are calculated as model predictions minus field ratings, a negative difference indicates the 

model is overestimating suitability.  If the differences are positive the model is 

underestimating suitability.  It is also informative to display differences in a histogram 

such as Figure XX.  The plot and statistics of a correlation between field ratings and 

model predictions may also be useful. 

 
Table 5.  Example accuracy scoring for one sample unit using a continuous rating scheme 

at the subsample level, which maintains explicit plot-level comparisons of 
model predictions and field ratings.  Accuracy was calculated as 1 - |model 
prediction – field rating|. 

Sample ID Field 
Rating 

Model 
Rating Difference Accuracy 

Score 
T1-1 0.90 1.00 0.100 0.900 
T1-2 0.90 1.00 0.100 0.900 
T1-3 0.00 1.00 1.000 0.000 
T1-4 1.00 0.00 1.000 0.000 
T1-5 0.55 0.45 0.100 0.900 
T1-6 0.70 0.675 0.025 0.975 
T1-7 0.45 0.675 0.225 0.775 
T1-8 0.30 0.45 0.150 0.850 
T1-9 0.45 1.00 0.550 0.450 

  Average 0.361 0.639 
 
Table 6.  Example accuracy scoring for one sample unit using a continuous rating scheme 

at the sample unit level.  Prior to scoring, model predictions and field ratings 
were independently sorted and similar rank pair scores were calculated as 1 - 
|model prediction – field rating|. 

Rank 
Order 

Field 
Rating 

Model 
Rating Difference Accuracy 

Score 
1 1.00 1.00 0.000 1.000 
2 0.90 1.00 0.100 0.900 
3 0.90 1.00 0.100 0.900 
4 0.70 1.00 0.300 0.700 
5 0.55 0.675 0.125 0.875 
6 0.45 0.675 0.225 0.775 
7 0.45 0.45 0.000 1.000 
8 0.30 0.45 0.150 0.850 
9 0 0 0.000 1.000 
  Average 0.111 0.889 
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An Example - Accuracy Assessment of a Northern Goshawk 
Nesting Habitat Suitability Index Model 
An example verification project using these protocols will be included in the journal 
submission, but is not included here, pending permission of the Northern Goshawk 
Recovery Team to distribute and publish the results. 
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Appendix 1.  Description of rating interpretations and typical habitat conditions found across the gradient of nesting habitat suitability 

for Northern Goshawks in Coastal BC.  The purpose of this table was to provide a basis for goshawk experts to standardize 
the criteria they used to decide on suitability ratings in the field.  This is not a cookbook type lookup table that non-experts 
could use to generate reliable field calls. 

Suitability Rating 0 – 0.25 
(Nil) 

0.25 – 0.50 
(Low) 

0.50 – 0.75 
(Moderate) 

0.75 – 1.00 
(High) 

Interpretation Unsuitable.  Habitat fails to 
provide minimum 
requirements. 

Suitability Unknown.  Habitat 
provides theoretical minimum 
requirements for supporting a 
nest, but use by goshawks is 
rarely observed.  Suitability of 
two or more habitat variables 
is suboptimal, substantially 
reducing the overall suitability 
of the stand.   

Suitable.  Suitability of one or 
two habitat variables is lower 
than optimal conditions but 
minimum requirements still 
exceeded.  Minority of nest 
sites expected to occur in 
Moderate class habitat.   

Suitable.  All habitat variables 
meet optimal conditions.  
Majority of nest sites are 
expected to occur in High 
class habitat. 

Nest Platforms1 None Very Limited Somewhat Limited Common 
Subcanopy Flyways2 Either overdense stands 

with virtually no flyways 
or very open stands with 
few, interspersed trees with 
virtually no canopy  

Flyways limited by 
multistoried stand structure 
or overdense stand (e.g. 
young forest) 

Flyways somewhat limited 
by multistoried stand 
structure 

Many clear flyways >30m 
in length below a closed 
overstory 

Forest Spp non-forested or forested bog Yc, Pl, Bl, Cw Ba, Hm, deciduous Hw, Ss, Fd 
Structural Stage 0 - 4 4 - 7 5 - 7 (5) 6 + 7 
Height <14m 14 - 20 20 - 26 > 26m 
Canopy Closure <20% <35% 35 – 45% ≥ 45% 
Expected % use3 0% 0-10% 10-25% 70-90% 
1 Branches large enough and in appropriate form to support a nest 
2 Flyways through the B2 and A3 layers to access nests and prey 
3 Expected distribution of a sample of nest areas at a regional level.  Use of moderate and low quality habitats reflects heterogeneity of individual 

selection and issue of preference vs minimum requirement. 
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