
Analyzing Values Below the Method
Detection Limit Using R

Carolyn Huston
Simon Fraser University

Hosted by the Bulkley Valley Research Centre

February 2008

1 / 37

About this Course

The following lectures provide an introduction to using the
statistical software package R. They do not demonstrate all
the features of R but concentrate on those that are most
useful for this workshop.

2 / 37

Conventions
Throughout this workshop, I will use the following conventions.
These are the same conventions as are used in the water quality
guidance document.

I The names of R command in the text will appear in a
different font, with parentheses; for example, summary().

I The names of R objects in the text will appear in the same
font, but will have no parentheses; for example,
ChickWeights.

I Commands that you can use will appear indented, preceded by
the symbol >; you do not need to type > when entering
commands. For example,

>min(weight)

I R output will also appear indented in a different font, for
example,

[1] 38

3 / 37

What is R?

R is a freely available language and environment for statistical
computing and graphics providing a wide variety of statistical and
graphical techniques. It is very similar to a commercial statistics
package called S-Plus, which is widely used by statisticians.
R is a command-line driven package. This means that for most
commands you have to type the command from the keyboard. The
advantage of this is that it is very flexible to add different options
to a command; for example,...

4 / 37

What is R
>hist(x=weight) will draw a histogram of the data weight using
default options

Histogram of weight

weight

F
re

qu
en

cy

0 100 200 300 400

0
50

10
0

15
0

20
0

5 / 37

What is R?

You may also specify some of these graphing options more exactly:

>hist(x=weight,breaks=15,freq=FALSE, col="blue",
main="Histogram of Weights")

6 / 37

What is R?

histogram of weights

weight

D
en

si
ty

50 100 150 200 250 300 350

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

7 / 37

Disadvantages of R

The main disadvantage of R, or any command-line
driven program, is that it may take a little time to
learn the commands. Many of the commands in R
are quite intuitive, making the learning process
easier.

8 / 37

Advantages of R (again)

I R is free and available for all major
platforms(PC, linux, Mac).

I It has excellent built-in help.

I It has excellent graphical capacities.

I It is powerful with many built-in statistical
functions.

I It is easy to extend with user-defined functions.

9 / 37

For More Information On R

For more information on R including downloads, packages
introducing extra functions, manuals, and links to related
websites see the R website:

http://www.r-project.org

10 / 37

Starting R
When R starts, a window (console) should open showing the
following text (the text may vary slightly depending on the version
you are using):

R version 2.5.0 (2007-04-23)

Copyright (C) 2007 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type ’contributors()’ for more information and

’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or

’help.start()’ for an HTML browser interface to help.

Type ’q()’ to quit R.

>

11 / 37

Starting R

The symbol, >, appears in red, and is called the prompt. This
indicates that R is waiting for you to type in a command. If a
command is too long to fit on a line, a + is used to indicate
that the command is continued from a previous line. All
commands that you type appear in red, and R output appears
in blue.
When you are inputting data into R, you do not need to type
the prompt, >.

12 / 37

Entering Commands

The most obvious way of using R to enter
commands is to type directly into the console
window. For example, try typing 2+2 at the
command prompt, and pressing enter. You should
see the output:

[1] 4

the [1] indicates that the answer is a vector of
length one; we will return to this later

13 / 37

Entering Commands

You can use the cursor key to edit things in the
command line, similar to how you would in a
program like Microsoft Word. Additionally, using
the up and down will allow you to scroll backwards
and forwards through previous commands; this can
save a lot of typing!

The main window that you type in is the
command/console window. Other windows that we
will talk about are the command history window,
and the graphics window.

14 / 37

Command History

Rather than scrolling through a long list of your
previous commands using the cursor, R provides
another way of retrieving previous commands. Type
history(), and a new window will appear listing
the last 25 commands that you have used. This is a
text file, so then you can copy and paste the
command(s) you want to use. To retrieve more
than 25 previous commands, for example to retrieve
the last 100, type history(max.show=100).

15 / 37

Script Files

A third alternative allowing you to retrieve previous
commands is to type your commands in a script file.
A script file is essentially a text file, and means that
you can type and edit R commands similar to how
you would type and edit sentences in Microsoft
Word! You can then save these commands for your
referral and use, or so a project analysis can be
easily shared between co-workers.
It is also much less frustrating to fix typos when
writing commands if you are using a script file!!!

16 / 37

Script Files

To open a script file in R, simply select File→New
Script to open a window for editing R scripts. You
can then simply type the commands that you wish
to use into the script window.
In order to save a script, you can simply select
File→Save As, and save as you ordinarily would.

17 / 37

Script Files

When writing commands in a script file, lines are used to
separate commands. If you wish to put comments in your
commands that R should ignore, you simply begin the line
with a hash ‘#’. R will ignore everything that is typed after
the hash on a line. This allows you to include explanatory
comments between your commands.

#draws a histogram

hist(weight)

#draws a slightly different histogram

hist(weight,breaks=15,freq=FALSE,

col="blue",main="Histogram of Weights")

18 / 37

Script Files

To run commands that you have typed into a script file you can do
one of the following:

I If you wish to run all of the commands in your script file
(excluding comments) in order, you can highlight all of the
text and hold down the ctrl-r keys. Alternatively,

I You can also source a script file (without having to open the
script) by typing source("h:/analysis.txt"). Finally,

I if you just want to run selected parts of your file, you can
copy and paste selected commands, or highlight the desired
commands and hold down the ctrl-R keys

We will discuss and practice more about using script files in
upcoming sections.

19 / 37

Getting Help

One of the easiest ways to access help in R is through the Help
menu. To do this, simply select Help→Html help. This displays
the help in Internet Explorer, similar to a webpage. The main page
has several topic areas. ‘An Introduction to R’ provides basic
instructions and help, similar to what we are discussing this
morning.

You can use the section ‘Search Engine and Keywords’ to search
for different commands by keyword, or topic. You can also access
this help using the help.search("topic of interest")
command in the R console.

For example, using either the help menu, or the R console, read
the documentation for the command history()

20 / 37

Quitting

So, you have had enough of R, and you want to
escape!!

To close R, use the command q(). Or select
File→Exit. R will ask you if you wish to save your
workspace. You answer ‘yes’ to this if you want to
keep data that you have created for the next time
you open R. I generally suggest saying ‘no’ to this
though, so your R workspace doesn’t become
cluttered and slow. An alternative is to save your
script file with commands on how to create any
data you were using.

21 / 37

Commands and Objects

R is an object-oriented program. This means that
every piece of information that R stores is an object.
For example, data, vectors, the results of
functions-all are objects. Each object has a name.
As an R user, you can perform actions on these
objects via functions/commands. Some functions
behave differently depending on the type of object
they are given.

Although this might sound complicated now, in
practice it makes R easy and efficient to use. We
will be building more on the idea of functions and
objects as we go along.

22 / 37

Listing Objects

Sometimes it can be useful to see a list of the
objects that are available to you in your R
workspace. To see a list of objects that have been
created on your R workspace, you can use the ls()
function. Typing ls() will cause R to list all the
objects that you have access to in your current R
session.

23 / 37

Removing Objects

It can also be useful to delete some of the objects in
your R workspace. For example, data objects that
have errors in them, or that you are no longer
analyzing. This can also prevent confusing two
objects with one another. To remove an object from
your workspace, you can use the rm() command.
For example, to remove a data object called
MyData you would use the following syntax:

rm(MyData)

24 / 37

Removing Objects

On rare occasions, you might want to remove all of
the objects stored in your R workspace and start
again from scratch. This should be done with
extreme caution though, because once objects are
removed they cannot be restored. To remove all of
the objects in your R workspace, type

rm(list=ls())

25 / 37

Simple Arithmetic

Any mathematical expression typed at the prompt,
>, is evaluated, and the result printed. You can use
simple arithmetic:

>1 + 2 + 3 #addition

[1] 6

>3*4+2 #multiplication is done first

[1] 14

>1+3/2 #so is division

[1] 2.5

26 / 37

Simple Arithmetic

>(1+3)/2 #use brackets to change the order

[1] 2

>4**2 #Use ** to exponentiate

[1] 16

>4^2 #or use ^

[1] 16

27 / 37

Order of Operations

As with arithmetic in general, R uses the following
order of operations in its equations.

B Brackets

E Exponents

D Division and

M Multiplication

A Addition and

S Subtraction

28 / 37

Simple Numeric Functions

More complicated mathematical expressions can be calculated
using built in functions in R. Built in functions each have their
own name, and require an argument. For example, the
function to calculate a square root has the name sqrt(). The
argument is the number (or set of numbers) that we want to
find the square root of. To make this function work in R, we
place the argument inside the bracket. To find the square root
of two, the argument is 2 so we type as follows:

> sqrt(2)

[1] 1.414214

29 / 37

Simple Numeric Functions

Similarly,

> log(3.14159) #log of pi

[1] 1.144729

> log(pi) #pi is a built in constant

[1] 1.144729

30 / 37

Simple Numeric Functions

A table of commonly used mathematical functions is given below.

abs() Absolute value (without +/-)
sign() 1 if argument is positive, -1 if it is negative.
sqrt() square root
log() natural logarithm
exp() exponential, e
sin(), asin() sin and sin−1

cos(), acos() cos and cos−1

tan(), atan() tan and tan−1

31 / 37

Variables

Variables are called objects in R. You can assign a
value to an object (in this case, a variable) using
‘=’, or the assignment operator ‘<- (a ‘less than’
sign followed by a minus sign). These two methods
of assigning names to objects are interchangeable.

x=5 #creates a variable called x

From now on you can use x in place of the number 5

32 / 37

Variables

>x+2

[1] 7

>sqrt(x)

[1] 2.236068

>y=sqrt(x) #make a new variable, y

33 / 37

Variables

Typing the name of an object prints the

value of it to the screen.

>y

[1] 2.236068

34 / 37

Logical Values

A logical value is either TRUE or FALSE.

>z=10 #set z equal to 10

>z>10 #is z strictly greater than 10?

[1] FALSE

> z<=10 #is z less than or equal to 10?

[1] TRUE

35 / 37

Logical Values

>z==10 #is z equal to 10?

[1] TRUE

To test if an object is equal to something, you must
use the == operator, with a double equals sign. Be
careful with this. It is easy to make a mistake and
use = instead.

36 / 37

End of Section 1

37 / 37

