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In this chapter, I review the main methods and techniques of complex systems science. 
As a first step, I distinguish among the broad patterns which recur across complex sys-
tems, the topics complex systems science commonly studies, the tools employed, and the 
foundational science of complex systems. The focus of this chapter is overwhelmingly on 
the third heading, that of tools. These in turn divide, roughly, into tools for analyzing 
data, tools for constructing and evaluating models, and tools for measuring complexity. I 
discuss the principles of statistical learning and model selection; time series analysis; cel-
lular automata; agent-based models; the evaluation of complex-systems models; informa-
tion theory; and ways of measuring complexity. Throughout, I give only rough outlines 
of techniques, so that readers, confronted with new problems, will have a sense of which 
ones might be suitable, and which ones definitely are not. 

1. INTRODUCTION

 A complex system, roughly speaking, is one with many parts, whose behav-
iors are both highly variable and strongly dependent on the behavior of the other 
parts. Clearly, this includes a large fraction of the universe! Nonetheless, it is not 
vacuously all-embracing: it excludes both systems whose parts just cannot do 
very much, and those whose parts are really independent of each other. "Com-
plex systems science" is the field whose ambition is to understand complex sys-
tems. Of course, this is a broad endeavor, overlapping with many even larger, 

Address correspondence to: Prof. Cosma Rohilla Shalizi, Statistics Department, Carnegie Mellon 
University, Pittsburgh, PA 15213 (cahalizi@stat.cmu.edu). 



34 C. R. SHALIZI 

better-established scientific fields. Having been asked by the editors to describe 
its methods and techniques, I begin by explaining what I feel does not fall within 
my charge, as indicated by Figure 1. 
 At the top of Figure 1 I have put "patterns." By this I mean more or less 
what people in software engineering do (1): a pattern is a recurring theme in the 
analysis of many different systems, a cross-systemic regularity. For instance, 
bacterial chemotaxis can be thought of as a way of resolving the tension be-
tween the exploitation of known resources, and costly exploration for new, po-
tentially more valuable, resources (Figure 2). This same tension is present in a 
vast range of adaptive systems. Whether the exploration–exploitation tradeoff 
arises among artificial agents, human decision-makers or colonial organisms, 
many of the issues are the same as in chemotaxis, and solutions and methods of 
investigation that apply in one case can profitably be tried in another (2,3). The 
pattern "tradeoff between exploitation and exploration" thus serves to orient us 
to broad features of novel situations. There are many other such patterns in 
complex systems science: "stability through hierarchically structured interac-
tions" (4), "positive feedback leading to highly skewed outcomes" (5), "local 
inhibition and long-rate activation create spatial patterns" (6), and so forth. 
 At the bottom of the quadrangle is "foundations," meaning attempts to build 
a basic, mathematical science concerned with such topics as the measurement of 

Figure 1. The quadrangle of complex systems. See text.



METHODS AND TECHNIQUES OF COMPLEX SYSTEMS SCIENCE 35

complexity (10), the nature of organization (11), the relationship between physi-
cal processes and information and computation (12), and the origins of complex-
ity in nature and its increase (or decrease) over time. There is dispute whether 
such a science is possible, and if so whether it would be profitable. I think it is 
both possible and useful, but most of what has been done in this area is very far 
from being applicable to biomedical research. Accordingly, I shall pass it over, 
with the exception of a brief discussion of some work on measuring complexity 
and organization that is especially closely tied to data analysis. 
 "Topics" go in the left-hand corner. Here are what one might call the "ca-
nonical complex systems," the particular systems, natural, artificial and fictional, 
which complex systems science has traditionally and habitually sought to under-
stand. Here we find networks (see Part II, chapter 4, by Wuchty, Ravasz, and 
Barabási, this volume), turbulence (13), physicochemical pattern formation and 
biological morphogenesis (14,15), genetic algorithms (16,17), evolutionary dy-
namics (18,19), spin glasses (20,21), neuronal networks (see Part III, section 5, 
this volume), the immune system (see Part III, section 4, this volume), social 
insects, ant-like robotic systems, the evolution of cooperation, evolutionary eco-

Figure 2. Bacterial chemotaxis. Should the bacterium (center) exploit the currently available 
patch of food, or explore, in hopes of finding richer patches elsewhere (e.g., at right)? Many 
species solve this problem by performing a random walk (jagged line), tumbling randomly 
every so often. The frequency of tumbling increases when the concentration of nutrients is 
high, making the bacterium take long steps in resource-poor regions, and persist in resource-
rich ones (7–9). 
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nomics, etc.1 These topics all fall within our initial definition of "complexity," 
though whether they are studied together because of deep connections, or be-
cause of historical accidents and tradition, is a difficult question. In any event, 
this chapter will not describe the facts and particular models relevant to these 
topics. 
 Instead, this chapter is about the right-hand corner, "tools." Some are proce-
dures for analyzing data, some are for constructing and evaluating models, and 
some are for measuring the complexity of data or models. In this chapter I will 
restrict myself to methods which are generally accepted as valid (if not always 
widely applied), and seem promising for biomedical research. These still de-
mand a book, if not an encyclopedia, rather than a mere chapter! Accordingly, I 
will merely try to convey the essentials of the methods, with pointers to refer-
ences for details. The goal is for you to have a sense of which methods would be 
good things to try on your problem, rather than to tell you everything you need 
to know to implement them. 

1.1. Outline of This Chapter

 As mentioned above, the techniques of complex systems science can, for 
our purposes, be divided into three parts: those for analyzing data (perhaps 
without reference to a particular model), those for building and understanding 
models (often without data), and those for measuring complexity as such. This 
chapter will examine them in that order. 
 The first part, on data, opens with the general ideas of statistical learning 
and data mining (§2), namely developments in statistics and machine learning 
theory that extend statistical methods beyond their traditional domain of low-
dimensional, independent data. We then turn to time series analysis (§3), where 
there are two important streams of work, inspired by statistics and nonlinear 
dynamics. 
 The second part, on modeling, considers the most important and distinctive 
classes of models in complex systems. On the vital area of nonlinear dynamics,
let the reader consult Socolar (Part II, chapter 2, this volume). Cellular auto-
mata (§4) allow us to represent spatial dynamics in a way that is particularly 
suited to capturing strong local interactions, spatial heterogeneity, and large-
scale aggregate patterns. Complementary to cellular automata are agent-based 
models (§5), perhaps the most distinctive and most famous kind of model in 
complex systems science. A general section (§6) on evaluating complex mod-
els, including analytical methods, various sorts of simulation, and testing, closes 
this part of the chapter. 
 The third part of the chapter considers ways of measuring complexity. As a 
necessary preliminary, §7 introduces the concepts of information theory, with 
some remarks on its application to biological systems. Then §8 treats complex-
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ity measures, describing the main kinds of complexity measure, their relation-
ships, and their applicability to empirical questions. 
 The chapter ends with a guide to further reading, organized by section. 
These emphasize readable and thorough introductions and surveys over more 
advanced or historically important contributions. 

2. STATISTICAL LEARNING AND DATA-MINING

 Complex systems, we said, are those with many strongly interdependent 
parts. Thanks to comparatively recent developments in statistics and machine 
learning, it is now possible to infer reliable, predictive models from data, even 
when the data concern thousands of strongly dependent variables. Such data 
mining is now a routine part of many industries, and is increasingly important in 
research. While not, of course, a substitute for devising valid theoretical models, 
data mining can tell us what kinds of patterns are in the data, and so guide our 
model-building. 

2.1. Prediction and Model Selection

 The basic goal of any kind of data mining is prediction: some variables, let 
us call them X, are our inputs. The output is another variable or variables Y. We 
wish to use X to predict Y, or, more exactly, we wish to build a machine which 
will do the prediction for us: we will put in X at one end, and get a prediction for 
Y out at the other.2

 "Prediction" here covers a lot of ground. If Y are simply other variables like 
X, we sometimes call the problem regression. If they are X at another time, we 
have forecasting, or prediction in a strict sense of the word. If Y indicates mem-
bership in some set of discrete categories, we have classification. Similarly, our 
predictions for Y can take the form of distinct, particular values (point predic-
tions), of ranges or intervals we believe Y will fall into, or of entire probability 
distributions for Y, i.e., guesses as to the conditional distribution Pr(Y|X). One 
can get a point prediction from a distribution by finding its mean or mode, so 
distribution predictions are in a sense more complete, but they are also more 
computationally expensive to make, and harder to make successfully. 
 Whatever kind of prediction problem we are attempting, and with whatever 
kind of guesses we want our machine to make, we must be able to say whether 
or not they are good guesses; in fact we must be able to say just how much bad 
guesses cost us. That is, we need a loss function for predictions.3 We suppose 
that our machine has a number of knobs and dials we can adjust, and we refer to 
these parameters, collectively, as . The predictions we make, with inputs X and 
parameters , are f(X, ), and the loss from the error in these predictions, when 
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the actual outputs are Y, is L(Y,f(X, )). Given particular values y and x, we have 
the empirical loss L(y,f(x, )), or ˆ( )L  for short.4

 Now, a natural impulse at this point is to twist the knobs to make the loss 
small: i.e., to select the  that minimizes ˆ( )L ; let's write this as follows: ˆ  = 
argmin ˆ( )L . This procedure is sometimes called empirical risk minimiza-
tion, or ERM. (Of course, doing that minimization can itself be a tricky nonlin-
ear problem, but I will not cover optimization methods here.) The problem with 
ERM is that the ˆ  we get from this data will almost surely not be the same as 
the one we'd get from the next set of data. What we really care about, if we think 
it through, is not the error on any particular set of data, but the error we can ex-
pect on new data, E[L( )]. The former, ˆ( )L , is called the training or in-sample
or empirical error; the latter, E[L( )], the generalization or out-of-sample or 
true error. The difference between in-sample and out-of-sample errors is due to 
sampling noise, the fact that our data are not perfectly representative of the sys-
tem we're studying. There will be quirks in our data which are just due to 
chance, but if we minimize L̂ blindly, if we try to reproduce every feature of the 
data, we will be making a machine that reproduces the random quirks, which do 
not generalize, along with the predictive features. Think of the empirical error 
ˆ( )L  as the generalization error, E[L( )], plus a sampling fluctuation, . If we 

look at machines with low empirical errors, we will pick out ones with low true 
errors, which is good, but we will also pick out ones with large negative sam-
pling fluctuations, which is not good. Even if the sampling noise  is very small, 
ˆ  can be very different from min. We have what optimization theory calls an ill-

posed problem (22). 
 Having a higher-than-optimal generalization error because we paid too 
much attention to our data is called over-fitting. Just as we are often better off if 
we tactfully ignore our friends' and neighbors' little faults, we want to ignore the 
unrepresentative blemishes of our sample. Much of the theory of data mining is 
about avoiding over-fitting. Three of the commonest forms of tact it has devel-
oped are, in order of sophistication, cross-validation, regularization (or bold 
penalties) and capacity control.

2.1.1. Validation

 We would never over-fit if we knew how well our machine's predictions 
would generalize to new data. Since our data is never perfectly representative, 
we always have to estimate the generalization performance. The empirical error 
provides one estimate, but it's biased towards saying that the machine will do 
well (since we built it to do well on that data). If we had a second, independent 
set of data, we could evaluate our machine's predictions on it, and that would 
give us an unbiased estimate of its generalization. One way to do this is to take 
our original data and divide it, at random, into two parts, the training set and the 
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test set or validation set. We then use the training set to fit the machine, and 
evaluate its performance on the test set. (This is an instance of resampling our 
data, which is a useful trick in many contexts.) Because we've made sure the test 
set is independent of the training set, we get an unbiased estimate of the out-of-
sample performance. 
 In cross-validation, we divide our data into random training and test sets 
many different ways, fit a different machine for each training set, and compare 
their performances on their test sets, taking the one with the best test-set per-
formance. This reintroduces some bias—it could happen by chance that one test 
set reproduces the sampling quirks of its training set, favoring the model fit to 
the latter. But cross-validation generally reduces over-fitting, compared to sim-
ply minimizing the empirical error; it makes more efficient use of the data, 
though it cannot get rid of sampling noise altogether. 

2.1.2. Regularization or Penalization

 I said that the problem of minimizing the error is ill-posed, meaning that 
small changes in the errors can lead to big changes in the optimal parameters. A 
standard approach to ill-posed problems in optimization theory is called regu-
larization. Rather than trying to minimize ˆ( )L  alone, we minimize 

ˆ( ) ( ),L d+  [1] 

where d( ) is a regularizing or penalty function. Remember that ˆ( )L  = E[L( )] 
+ , where  is the sampling noise. If the penalty term is well-designed, then the 
 which minimizes 

E[L( )] +  + d( ) [2] 

will be close to the  that minimizes E[L( )]—it will cancel out the effects of 
favorable fluctuations. As we acquire more and more data,  0, so , too, goes 
to zero at an appropriate pace, and the penalized solution will converge on the 
machine with the best possible generalization error. 
 How then should we design penalty functions? The more knobs and dials 
there are on our machine, the more opportunities we have to get into mischief by 
matching chance quirks in the data. If one machine has fifty knobs and another 
fits the data just as well but has only a single knob, we should (the story goes) 
chose the latter—because it's less flexible the fact that it does well is a good in-
dication that it will still do well in the future. There are thus many regularization 
methods that add a penalty proportional to the number of knobs, or, more for-
mally, the number of parameters. These include the Akaike information crite-
rion or AIC (23) and the Bayesian information criterion or BIC (24,25). Other 
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methods penalize the "roughness" of a model, i.e., some measure of how much 
the prediction shifts with a small change in either the input or the parameters 
(26, ch. 10). A smooth function is less flexible, and so has less ability to match 
meaningless wiggles in the data. Another popular penalty method, the minimum 
description length principle of Rissanen, will be dealt with in §8.3 below. 
 Usually, regularization methods are justified by the idea that models can be 
more or less complex, and more complex ones are more liable to over-fit, all 
else being equal, so penalty terms should reflect complexity (Figure 3). There's 
something to this idea, but the usual way of putting it does not really work; see 
§2.3 below. 

2.1.3. Capacity Control

 Empirical risk minimization, we said, is apt to over-fit because we do not 
know the generalization errors, just the empirical errors. This would not be such 
a problem if we could guarantee that the in-sample performance was close to 
the out-of-sample performance. Even if the exact machine we got this way was 
not particularly close to the optimal machine, we'd then be guaranteed that our 
predictions were nearly optimal. We do not even need to guarantee that all the 

Figure 3. Empirical loss and generalization loss as a function of model complexity. 
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empirical errors are close to their true values, just that the smallest empirical 
error is close to the smallest generalization error. 
 Recall that ˆ( ) [ ( )]L L= +E . It is natural to assume that as our sample size 
N becomes larger, our sampling error  will approach zero. (We will return to 
this assumption below.) Suppose we could find a function (N) to bound our 
sampling error, such that | | (N). Then we could guarantee that our choice of 
model was approximately correct; if we wanted to be sure that our prediction 
errors were within  of the best possible, we would merely need to have N( ) = 

–1( ) data-points. 
 It should not be surprising to learn that we cannot, generally, make ap-
proximately correct guarantees. As the eminent forensic statistician C. Chan 
remarked, "Improbable events permit themselves the luxury of occurring" (27), 
and one of these indulgences could make the discrepancy between ˆ( )L  and 
E[L( )] very large. But if something like the law of large numbers holds, or the 
ergodic theorem (§3.2), then for every choice of ,

ˆPr(| ( ) [ ( )] | > ) 0,L LE  [3] 

for every positive .5  We should be able to find some function  such that 

ˆPr(| ( ) [ ( )] | > ) ( , , ),L L NE  [4] 

with limN (N, , ) = 0. Then, for any particular , we could give probably ap-
proximately correct (28) guarantees, and say that, e.g., to have 95% confidence 
that the true error is within 0.001 of the empirical error requires at least 144,000 
samples (or whatever the precise numbers may be). If we can give probably ap-
proximately correct (PAC) guarantees on the performance of one machine, we 
can give them for any finite collection of machines. But if we have infinitely 
many possible machines, might not there always be some of them which are 
misbehaving? Can we still give PAC guarantees when  is continuous? 
 The answer to this question depends on how flexible the set of machines 
is—its capacity. We need to know how easy it is to find a  such that f(X, ) will 
accommodate itself to any Y. This is measured by a quantity called the Vapnik-
Chervonenkis (VC) dimension (22).6 If the VC dimension d of a class of ma-
chines is finite, one can make a PAC guarantee that applies to all machines in 
the class simultaneously: 

( )ˆPr max | ( ) [ ( )] | ( , , ) ,L L N dE  [5] 

where the function (N,d, ) expresses the rate of convergence. It depends on the 
particular kind of loss function involved. For example, for binary classification, 
if the loss function is the fraction of inputs misclassified, 
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1 2 4
( , , ) (1 ln ) ln .

N
N d d

dN
= + +  [6] 

Notice that  is not an argument to , and does not appear in [6]. The rate of 
convergence is the same across all machines; this kind of result is thus called a 
uniform law of large numbers. The really remarkable thing about [5] is that it 
holds no matter what the sampling distribution is, so long as samples are inde-
pendent; it is a distribution-free result. 
 The VC bounds lead to a very nice learning scheme: simply apply empirical 
risk minimization, for a fixed class of machines, and then give a PAC guarantee 
that the one picked is, with high reliability, very close to the actual optimal 
machine. The VC bounds also lead an appealing penalization scheme, where the 
penalty is equal to our bound on the over-fitting, . Specifically, we set the term 

d( ) in [1] equal to the  in [5], ensuring, with high probability, that the  and 
d( ) terms in [2] cancel each other. This is structural risk minimization

(SRM). 
 It's important to realize that the VC dimension is not the same as the num-
ber of parameters. For some classes of functions, it is much lower than the num-
ber of parameters, and for others it's much higher. (There are examples of one-
parameter classes of functions with infinite VC dimension.) Determining the VC 
dimension often involves subtle combinatorial arguments, but many results are 
now available in the literature, and more are appearing all the time. There are 
even schemes for experimentally estimating the VC dimension (29). 
 Two caveats are in order. First, because the VC bounds are distribution-
free, they are really about the rate of convergence under the worst possible dis-
tribution, the one a malicious adversary out to foil our data mining would 
choose. This means that in practice, convergence is often much faster than [5] 
would indicate. Second, the usual proofs of the VC bounds all assume independ-
ent, identically distributed samples, though the relationship between X and Y can 
involve arbitrarily complicated dependencies.7 Recently, there has been much 
progress in proving uniform laws of large numbers for dependent sequences of 
samples, and structural risk minimization has been extended to what are called 
"mixing" processes (30), in effect including an extra term in the  function ap-
pearing in [5] that discounts the number of observations by their degree of mu-
tual dependence. 

2.2. Choice of Architecture

 The basic idea of data mining is to fit a model to data with minimal assump-
tions about what the correct model should be, or how the variables in the 
data are related. (This differs from such classical statistical questions as testing 
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specific hypotheses about specific models, such as the presence of interactions 
between certain variables.) This is facilitated by the development of extremely 
flexible classes of models, which are sometimes, misleadingly, called non-
parametric; a better name would be megaparametric. The idea behind mega-
parametric models is that they should be capable of approximating any func-
tion, at least any well-behaved function, to any desired accuracy, given enough 
capacity.
 The polynomials are a familiar example of a class of functions which can 
perform such universal approximation. Given any smooth function f, we can 
represent it by taking the Taylor series around our favorite point x0. Truncating 
that series gives an approximation to f:
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In fact, if f is an nth-order polynomial, the truncated series is exact, not an ap-
proximation. 
 To see why this is not a reason to use only polynomial models, think about 
what would happen if f(x) = sin x. We would need an infinite-order polynomial 
to completely represent f, and the generalization properties of finite-order ap-
proximations would generally be lousy: for one thing, f is bounded between –1 
and 1 everywhere, but any finite-order polynomial will start to zoom off to  or 
–  outside some range. Of course, this f would be really easy to approximate as 
a superposition of sines and cosines, which is another class of functions which is 
capable of universal approximation (better known, perhaps, as Fourier analysis). 
What one wants, naturally, is to choose a model class which gives a good ap-
proximation of the function at hand, at low order. We want low-order functions, 
both because computational demands rise with model order and because higher-
order models are more prone to over-fitting (VC dimension generally rises with 
model order). 
 To adequately describe all of the common model classes, or model archi-
tectures, used in the data mining literature would require another chapter ((31) 
and (32) are good for this.) Instead, I will merely name a few. 

Splines are piecewise polynomials, good for regression on bounded do-
mains; there is a very elegant theory for their estimation (33). 
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Neural networks or multilayer perceptrons have a devoted following, 
both for regression and classification (32). The application of VC theory to them 
is quite well-advanced (34,35), but there are many other approaches, including 
ones based on statistical mechanics (36). It is notoriously hard to understand 
why they make the predictions they do. 

Classification and regression trees (CART), introduced in the book of that 
name (37), recursively subdivide the input space, rather like the game of "twenty 
questions" ("Is the temperature above 20 centigrade? If so, is the glucose con-
centration above one millimole?," etc.); each question is a branch of the tree. All 
the cases at the end of one branch of the tree are treated equivalently. The result-
ing decision trees are easy to understand, and often similar to human decision 
heuristics (38). 

Kernel machines (22,39) apply nonlinear transformations to the 
input, mapping it to a much higher dimensional "feature space," where they 
apply linear prediction methods. This trick works because the VC dimension of 
linear methods is low, even in high-dimensional spaces. Kernel methods come 
in many flavors, of which the most popular, currently, are support vector 
machines (40). 

2.2.1. Predictive Versus Causal Models

 Predictive and descriptive models both are not necessarily causal. PAC-type 
results give us reliable prediction, assuming future data will come from the same
distribution as the past. In a causal model, however, we want to know how 
changes will propagate through the system. One difficulty is that these relation-
ships are one-way, whereas prediction is two-way (one can predict genetic vari-
ants from metabolic rates, but one cannot change genes by changing 
metabolism). The other is that it is hard (if not impossible) to tell if the predic-
tive relationships we have found are confounded by the influence of other vari-
ables and other relationships we have neglected. Despite these difficulties, the 
subject of causal inference from data is currently a very active area of research, 
and many methods have been proposed, generally under assumptions about the 
absence of feedback (41–43). When we have a causal or generative model, we 
can use very well-established techniques to infer the values of the hidden or la-
tent variables in the model from the values of their observed effects (41,44). 

2.3. Occam's Razor and Complexity in Prediction

 Often, regularization methods are thought to be penalizing the complexity of 
the model, and so implementing some version of Occam's Razor. Just as Occam 
said "entities are not to be multiplied beyond necessity,"8 we say "parameters 
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should not be multiplied beyond necessity," or, "the model should be no rougher 
than necessary." This takes complexity to be a property of an individual model, 
and the hope is that a simple model that can predict the training data will also be 
able to predict new data. Under many circumstances, one can prove that as the 
size of a sample approaches infinity regularization will converge on the correct 
model, the one with the best generalization performance (26). But one can often 
prove exactly the same thing about ERM without any regularization or penaliza-
tion at all; this is what the VC bounds [5] accomplish. While regularization 
methods often do well in practice, so, too, does straight ERM. If we compare the 
performance of regularization methods to straight empirical error minimization 
on artificial examples, where we can calculate the generalization performance 
exactly, regularization sometimes conveys no clear advantage at all (45). 
 Contrast this with what happens in structural risk minimization. There our 
complexity penalty depends solely on the VC dimension of the class of models 
we're using. A simple, inflexible model which we find only because we're look-
ing at a complex, flexible class is penalized just as much as the most wiggly 
member of that class. Experimentally, SRM does work better than simple ERM, 
or than traditional penalization methods. 
 A simple example may help illuminate why this is so. Suppose we're inter-
ested in binary classification, and we find a machine  that correctly classifies a 
million independent data points. If the real error rate (= generalization error) for 
 was one in a hundred thousand, the chance that it would correctly classify a 

million data points would be 
610(0.99999)  4.5  10–5. If  was the very first pa-

rameter setting we checked, we could be quite confident that its true error rate 
was much less than 10–5, no matter how complicated the function f(X, ) looked. 
But if we've looked at ten million parameter settings before finding , then the 
odds are quite good that, among the machines with an error rate of 10–5, we'd 
find several that correctly classify all the points in the training set, so the fact 
that  does is not good evidence that it's the best machine.9 What matters is not 
how much algebra is involved in making the predictions once we've chosen ,
but how many alternatives to  we've tried out and rejected. The VC dimension 
lets us apply this kind of reasoning rigorously and without needing to know the 
details of the process by which we generate and evaluate models. 
 The upshot is that the kind of complexity which matters for learning, and so 
for Occam's Razor, is the complexity of classes of models, not of individual 
models nor of the system being modeled. It is important to keep this point in 
mind when we try to measure the complexity of systems (§8). 

2.4. Relation of Complex Systems Science to Statistics

 Complex systems scientists often regard the field of statistics as irrelevant 
to understanding such systems. This is understandable, since the exposure most 
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scientists have to statistics (e.g., the "research methods" courses traditional in 
the life and social sciences) typically deal with systems with only a few vari-
ables and with explicit assumptions of independence, or only very weak depend-
ence. The kind of modern methods we have just seen, amenable to large systems 
and strong dependence, are rarely taught in such courses, or even mentioned. 
Considering the shaky grasp many students have on even the basic principles of 
statistical inference, this is perhaps wise. Still, it leads to even quite eminent 
researchers in complexity making disparaging remarks about statistics (e.g., 
"statistical hypothesis testing, that substitute for thought"), while actually rein-
venting tools and concepts which have long been familiar to statisticians. 
 For their part, many statisticians tend to overlook the very existence of 
complex systems science as a separate discipline. One may hope that the in-
creasing interest from both fields on topics such as bioinformatics and networks 
will lead to greater mutual appreciation. 

3. TIME SERIES ANALYSIS

 There are two main schools of time series analysis. The older one has a long 
pedigree in applied statistics (46), and is prevalent among statisticians, social 
scientists (especially econometricians), and engineers. The younger school, de-
veloped essentially since the 1970s, comes out of physics and nonlinear dynam-
ics. The first views time series as samples from a stochastic process, and applies 
a mixture of traditional statistical tools and assumptions (linear regression, the 
properties of Gaussian distributions) and the analysis of the Fourier spectrum. 
The second school views time series as distorted or noisy measurements of an 
underlying dynamical system, which it aims to reconstruct. 
 The separation between the two schools is in part due to the fact that, when 
statistical methods for time series analysis were first being formalized, in the 
1920s and 1930s, dynamical systems theory was literally just beginning. The 
real development of nonlinear dynamics into a powerful discipline has mostly 
taken place since the 1960s, by which point the statistical theory had acquired a 
research agenda with a lot of momentum. In turn, many of the physicists in-
volved in experimental nonlinear dynamics in the 1980s and early 1990s were 
fairly cavalier about statistical issues, and some happily reported results which 
should have been left in their file-drawers. 
 There are welcome signs, however, that the two streams of thought are coa-
lescing. Since the 1960s, statisticians have increasingly come to realize the vir-
tues of what they call "state-space models," which are just what the physicists 
have in mind with their dynamical systems. The physicists, in turn, have become 
more sensitive to statistical issues, and there is even now some cross-
disciplinary work. In this section, I will try, so far as possible, to use the state-
space idea as a common framework to present both sets of methods. 
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3.1. The State-Space Picture

 The state is a vector-valued function of time, xt. In discrete time, this 
evolves according to some map, 

xt+1 F(xt,t, t), [10] 

where the map F is allowed to depend on time t and a sequence of independent 
random variables t. In continuous time, we do not specify the evolution of the 
state directly, but rather the rates of change of the components of the state, 

( , , ).t

dx
F x t

dt
=  [11] 

Since our data are generally taken in discrete time, I will restrict myself to con-
sidering that case from now on; almost everything carries over to continuous 
time naturally. The evolution of x is, so to speak, self-contained, or more pre-
cisely Markovian: all the information needed to determine the future is con-
tained in the present state xt, and earlier states are irrelevant. (This is basically 
how physicists define "state" (46).) Indeed, it is often reasonable to assume that 
F is independent of time, so that the dynamics are autonomous (in the terminol-
ogy of dynamics) or homogeneous (in that of statistics). If we could look at the 
series of states, then, we would find it had many properties which made it very 
convenient to analyze. 
 Sadly, however, we do not observe the state x; what we observe or measure 
is y, which is generally a noisy, nonlinear function of the state: yt = h(xt, t), 
where t is measurement noise. Whether y, too, has the convenient properties 
depends on h, and usually y is not convenient. Matters are made more compli-
cated by the fact that we do not, in typical cases, know the observation function 
h, nor the state-dynamics F, nor even, really, what space x lives in. The goal of 
time-series methods is to make educated guess about all these things, so as to 
better predict and understand the evolution of temporal data. 
 In the ideal case, simply from a knowledge of y, we would be able to iden-
tify the state space, the dynamics, and the observation function. As a matter of 
pure mathematical possibility, this can be done for essentially arbitrary time 
series (48,49). Nobody, however, knows how to do this with complete generality 
in practice. Rather, one makes certain assumptions about, say, the state space, 
which are strong enough that the remaining details can be filled in using y. Then 
one checks the result for accuracy and plausibility, i.e., for the kinds of errors 
which would result from breaking those assumptions (50). 
 Subsequent parts of this section describe classes of such methods. First, 
however, I describe some of the general properties of time series, and general 
measurements which can be made upon them. 
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Notation. There is no completely uniform notation for time series. Since it 
will be convenient to refer to sequences of consecutive values. I will write all 
the measurements starting at s and ending at t as ys

t. Further, I will abbreviate the 
set of all measurements up to time t, 1ty + , as yt

–, and the future starting from t,
y t+1, as yt

+.

3.2. General Properties of Time Series

 One of the most commonly assumed properties of a time series is stationar-
ity, which comes in two forms: strong or strict stationarity, and weak, wide-
sense or second-order stationarity. Strong stationarity is the property that the 
probability distribution of sequences of observations does not change over time. 
That is, 

Pr( ) Pr( )t h t h
t tY Y+ + +

+=  [12] 

for all lengths of time h and all shifts forwards or backwards in time . When a 
series is described as "stationary" without qualification, it depends on context 
whether strong or weak stationarity is meant. 
 Weak stationarity, on the other hand, is the property that the first and sec-
ond moments of the distribution do not change over time. 

E[Yt] = E[Yt+ ], [13] 

E[YtYt+h] = E[Yt+ Yt+ +h]. [14] 

If Y is a Gaussian process, then the two senses of stationarity are equivalent. 
Note that both sorts of stationarity are statements about the true distribution, and 
so cannot be simply read off from measurements. 
 Strong stationarity implies a property called ergodicity, which is much 
more generally applicable. Roughly speaking, a series is ergodic if any suffi-
ciently long sample is representative of the entire process. More exactly, con-
sider the time-average of a well-behaved function f of Y,

2
2

1
2 1

1
( ).

t t
t

tt
t t

f f Y
t t

=

=

 [15] 

This is generally a random quantity, since it depends on where the trajectory 
started at t1, and any random motion which may have taken place between then 
and t2. Its distribution generally depends on the precise values of t1 and t2. The 
series Y is ergodic if almost all time-averages converge eventually, i.e., if 
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lim
t T

tT
f f
+
=  [16] 

for some constant f  independent of the starting time t, the starting point Yt, or 
the trajectory Yt . Ergodic theorems specify conditions under which ergodicity 
holds; surprisingly, even completely deterministic dynamical systems can be 
ergodic. 
 Ergodicity is such an important property because it means that statistical 
methods are very directly applicable. Simply by waiting long enough one can 
obtain an estimate of any desired property that will be closely representative of 
the future of the process. Statistical inference is possible for non-ergodic proc-
esses, but it is considerably more difficult, and often requires multiple time se-
ries (51,52). 
 One of the most basic means of studying a time series is to compute the 
autocorrelation function (ACF), which measures the linear dependence be-
tween the values of the series at different points in time. This starts with auto-
covariance function:

C(s,t) E[(ys – E[ys]) (yt –E[yt])]. [17] 

(Statistical physicists, unlike everyone else, call this the "correlation function.") 
The autocorrelation itself is the autocovariance, normalized by the variability of 
the series: 

( , )
( , ) ,

( , ) ( , )

C s t
s t

C s s C t t
 [18] 

 is 1 when ys is a linear function of yt. Note that the definition is symmetric, so 
(s,t) = (t,s). For stationary or weakly stationary processes, one can show that 

depends only on the difference between t and s. In this case one just writes 
( ), with one argument. (0) = 1, always. The time tc such that (tc) = 1/e is 

called the (auto)correlation time of the series. 
 The correlation function is a time-domain property, since it is basically 
about the series considered as a sequence of values at distinct times. There are 
also frequency-domain properties, which depend on reexpressing the series as a 
sum of sines and cosines with definite frequencies. A function of time y has a 
Fourier transform that is a function of frequency, y :

y y= , [19] 

2

1

tT i
T

t
t

y e y
=

= , [20] 
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assuming the time series runs from t = 1 to t = T. (Rather than separating out 
the sine and cosine terms, it is easier to use the complex-number representation, 
via ei  = cos  + i sin .) The inverse Fourier transform recovers the original 
function: 

1y y= , [21] 

21

0

1 tT i
T

ty e y
T =

= . [22] 

The Fourier transform is a linear operator, in the sense that (x + y) = x + y.
Moreover, it represents series we are interested in as a sum of trigonometric 
functions, which are themselves solutions to linear differential equations. These 
facts lead to extremely powerful frequency-domain techniques for studying lin-
ear systems. Of course, the Fourier transform is always valid, whether the sys-
tem concerned is linear or not, and it may well be useful, though that is not 
guaranteed. 
 The squared absolute value of the Fourier transform, 2( ) | |f y= , is called 
the spectral density or power spectrum. For stationary processes, the power 
spectrum f( ) is the Fourier transform of the autocovariance function C( ) (a 
result called the Wiener-Khinchin theorem). An important consequence is that a 
Gaussian process is completely specified by its power spectrum. In particular, 
consider a sequence of independent Gaussian variables, each with variance 2.
Because they are perfectly uncorrelated, C(0) = 2, and C( ) = 0 for any  0. 
The Fourier transform of such a C( ) is just f( ) = 2, independent of —every 
frequency has just as much power. Because white light has equal power in every 
color of the spectrum, such a process is called white noise. Correlated proc-
esses, with uneven power spectra, are sometimes called colored noise, and there 
is an elaborate terminology of red, pink, brown, etc., noises (53, ch. 3). 
 The easiest way to estimate the power spectrum is simply to take the Fou-
rier transform of the time series, using, e.g., the fast Fourier transform algorithm 
(54). Equivalently, one might calculate the autocovariance and Fourier trans-
form in that manner. Either way, one has an estimate of the spectrum, which is 
called the periodogram. It is unbiased, in that the expected value of the perio-
dogram at a given frequency is the true power at that frequency. Unfortunately, 
it is not consistent—the variance around the true value does not shrink as the 
series grows. The easiest way to overcome this is to apply any of several well-
known smoothing functions to the periodogram, a procedure called windowing
(55). (Standard software packages will accomplish this automatically.) 
 The Fourier transform takes the original series and decomposes it into a 
sum of sines and cosines. This is possible because any reasonable function can 
be represented in this way. The trigonometric functions are thus a basis for the 
space of functions. There are many other possible bases, and one can equally 
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well perform the same kind of decomposition in any other basis. The trigono-
metric basis is particularly useful for stationary time series because the basis 
functions are themselves evenly spread over all times (56, ch. 2). Other bases, 
localized in time, are more convenient for nonstationary situations. The most 
well-known of these alternate bases, currently, are wavelets (57), but there is, 
literally, no counting the other possibilities. 

3.3. The Traditional Statistical Approach

 The traditional statistical approach to time series is to represent them 
through linear models of the kind familiar from applied statistics. 
 The most basic kind of model is that of a moving average, which is espe-
cially appropriate if x is highly correlated up to some lag, say q, after which the 
ACF decays rapidly. The moving average model represents x as the result of 
smoothing q + 1 independent random variables. Specifically, the MA(q) model 
of a weakly stationary series is 

1

q

t t k t k
k

y w w
=

= + + , [23] 

where  is the mean of y, the i are constants and the wt are white noise variables. 
q is called the order of the model. Note that there is no direct dependence be-
tween successive values of y; they are all functions of the white noise series w.
Note also that yt and yt+q+1 are completely independent; after q time-steps, the 
effects of what happened at time t disappear. 
 Another basic model is that of an autoregressive process, where the next 
value of y is a linear combination of the preceding values of y. Specifically, an 
AR(p) model is 

1

p

t k t k t
k

y y w
=

= + + , [24] 

where i are constants and 
1

p

k k=
= + . The order of the model, again is p.

This is the multiple regression of applied statistics transposed directly on to time 
series, and is surprisingly effective. Here, unlike the moving average case, ef-
fects propagate indefinitely—changing yt can affect all subsequent values of y.
The remote past only becomes irrelevant if one controls for the last p values of 
the series. If the noise term wt were absent, an AR(p) model would be a pth or-
der linear difference equation, the solution to which would be some combination 
of exponential growth, exponential decay and harmonic oscillation. With noise, 
they become oscillators under stochastic forcing (58). 
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 The natural combination of the two types of model is the autoregressive 
moving average model, ARMA(p,q): 

1 1

p q

t k t k t k t k
k k

y y w w
=

= + + + . [25] 

This combines the oscillations of the AR models with the correlated driving 
noise of the MA models. An AR(p) model is the same as an ARMA(p,0) model, 
and likewise an MA(q) model is an ARMA(0,q) model. 
 It is convenient, at this point in our exposition, to introduce the notion of the 
back-shift operator B,

Byt = yt–1, [26] 

and the AR and MA polynomials,

1

( ) 1
p

k
k

k

z z
=

= , [27] 
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q
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k

z z
=

= + , [28] 

respectively. Then, formally speaking, in an ARMA process is 

(B)yt = (B)wt. [29] 

The advantage of doing this is that one can determine many properties of an 
ARMA process by algebra on the polynomials. For instance, two important 
properties we want a model to have are invertibility and causality. We say that 
the model is invertible if the sequence of noise variables wt can be determined 
uniquely from the observations yt; in this case we can write it as an MA( )
model. This is possible just when (z) has no roots inside the unit circle. Simi-
larly, we say the model is causal if it can be written as an AR( ) model, without 
reference to any future values. When this is true, (z) also has no roots inside the 
unit circle. 
 If we have a causal, invertible ARMA model, with known parameters, we 
can work out the sequence of noise terms, or innovations wt associated with our 
measured values yt. Then, if we want to forecast what happens past the end of 
our series, we can simply extrapolate forward, getting predictions 1 2ˆ ˆ, ,T Ty y+ +  etc. 
Conversely, if we knew the innovation sequence, we could determine the pa-
rameters  and . When both are unknown, as is the case when we want to fit a 
model, we need to determine them jointly (55). In particular, a common proce-
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dure is to work forward through the data, trying to predict the value at each time 
on the basis of the past of the series; the sum of the squared differences between 
these predicted values tŷ  and the actual ones yt forms the empirical loss: 

2

1

ˆ( )
T

t t
i

L y y
=

= . [30] 

For this loss function, in particular, there are very fast standard algorithms, and 
the estimates of  and  converge on their true values, provided one has the right 
model order. 
 This leads naturally to the question of how one determines the order of 
ARMA model to use, i.e., how one picks p and q. This is precisely a model se-
lection task, as discussed in §2. All methods described there are potentially ap-
plicable; cross-validation and regularization are more commonly used than 
capacity control. Many software packages will easily implement selection ac-
cording to the AIC, for instance. 
 The power spectrum of an ARMA(p,q) process can be given in closed form: 

22
1

2

1

(1 )
( )

2 (1 )

q i k
kk

p k
kk

e
f

e
=

=

+
=

+
. [31] 

Thus, the parameters of an ARMA process can be estimated directly from the 
power spectrum, if you have a reliable estimate of the spectrum. Conversely, 
different hypotheses about the parameters can be checked from spectral data. 
 All ARMA models are weakly stationary; to apply them to nonstationary 
data one must transform the data so as to make it stationary. A common trans-
formation is differencing, i.e., applying operations of the form 

yt = yt – yt-1, [32] 

which tends to eliminate regular trends. In terms of the back-shift operator, 

yt = (1 – B)yt, [33] 

and higher-order differences are 

dyt = (1 – B)dyt. [34] 

Having differenced the data to our satisfaction, say d times, we then fit an 
ARMA model to it. The result is an autoregressive integrated moving average
model, ARIMA(p,d,q) (59), given by 
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(B)(1 – B)dyt = (B)wt, [35] 

As mentioned above (§3.1), ARMA and ARIMA models can be recast in state 
space terms, so that our y is a noisy measurement of a hidden x (60). For these 
models, both the dynamics and the observation functions are linear, that is, xt+1 = 
Axt + t and yt = Bxt + t, for some matrices A and B. The matrices can be deter-
mined from the  and  parameters, though the relation is a bit too involved to 
give here. 

3.3.1. Applicability of Linear Statistical Models

 It is often possible to describe a nonlinear dynamical system through an 
effective linear statistical model, provided the nonlinearities are cooperative 
enough to appear as noise (61). It is an under-appreciated fact that this is at least 
sometimes true even of turbulent flows (62,63); the generality of such an ap-
proach is not known. Certainly, if you care only about predicting a time series, 
and not about its structure, it is always a good idea to try a linear model first, 
even if you know that the real dynamics are highly nonlinear. 

3.3.2. Extensions

 While standard linear models are more flexible than one might think, they 
do have their limits, and recognition of this has spurred work on many exten-
sions and variants. Here I briefly discuss a few of these. 

Long Memory. The correlations of standard ARMA and ARIMA models 
decay fairly rapidly, in general exponentially; /( ) ,ct tt e where c is the corre-
lation time. For some series, however, c is effectively infinite, and (t) t–  for 
some exponent . These are long-memory processes, because they remain sub-
stantially correlated over very long times. These can still be accommodated 
within the ARIMA framework, formally, by introducing the idea of fractional
differencing, or, in continuous time, fractional derivatives (64,53). Often long-
memory processes are self-similar, which can simplify their statistical estima-
tion (65). 

Volatility. All ARMA and even ARIMA models assume constant variance. 
If the variance is itself variable, it can be worthwhile to model it. Autoregres-
sive conditionally heteroscedastic (ARCH) models assume a fixed mean value 
for yr, but a variance which is an auto-regression on yt

2. Generalized ARCH
(GARCH) models expand the regression to include the (unobserved) earlier 
variances. ARCH and GARCH models are especially suitable for processes that 
display clustered volatility, periods of extreme fluctuation separated by 
stretches of comparative calm. 
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Nonlinear and Nonparametric Models. Nonlinear models are obviously 
appealing, and when a particular parametric form of model is available, rea-
sonably straightforward modifications of the linear machinery can be used to fit, 
evaluate and forecast the model (55, chap. 9). However, it is often impractical to 
settle on a good parametric form beforehand. In these cases, one must turn to 
nonparametric models, as discussed in §2.2; neural networks are a particular 
favorite here (35). The so-called kernel smoothing methods are also particu-
larly well-developed for time series, and often perform almost as well as para-
metric models (66). Finally, information theory provides universal prediction 
methods, which promise to asymptotically approach the best possible predic-
tion, starting from exactly no background knowledge. This power is paid for by 
demanding a long initial training phase used to infer the structure of the process, 
when predictions are much worse than many other methods could deliver (67). 

3.4. The Nonlinear Dynamics Approach

 The younger approach to the analysis of time series comes from nonlinear 
dynamics, and is intimately bound up with the state-space approach described in 
§3.1 above. The idea is that the dynamics on the state space can be determined 
directly from observations, at least if certain conditions are met. 
 The central result here is the Takens Embedding Theorem (68); a simpli-
fied, slightly inaccurate version is as follows. Suppose the d-dimensional state 
vector xt evolves according to an unknown but continuous and (crucially) deter-
ministic dynamic. Suppose, too, that the one-dimensional observable y is a 
smooth function of x, and "coupled" to all the components of x. Now at any time 
we can look not just at the present measurement y(t), but also at observations 
made at times removed from us by multiples of some lag : yt– , yt–2 , etc. If we 
use k lags, we have a k-dimensional vector. One might expect that, as the num-
ber of lags is increased, the motion in the lagged space will become more and 
more predictable, and perhaps in the limit k  would become deterministic. In 
fact, the dynamics of the lagged vectors become deterministic at a finite dimen-
sion; not only that, but the deterministic dynamics are completely equivalent to 
those of the original state space! (More exactly, they are related by a smooth, 
invertible change of coordinates, or diffeomorphism.) The magic embedding 
dimension k is at most 2d + 1, and often less. 
 Given an appropriate reconstruction via embedding, one can investigate 
many aspects of the dynamics. Because the reconstructed space is related to the 
original state space by a smooth change of coordinates, any geometric property 
that survives such treatment is the same for both spaces. These include the di-
mension of the attractor, the Lyapunov exponents (which measure the degree of 
sensitivity to initial conditions), and certain qualitative properties of the autocor-
relation function and power spectrum ("correlation dimension"). Also preserved 
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is the relation of "closeness" among trajectories—two trajectories that are close 
in the state space will be close in the embedding space, and vice versa. This 
leads to a popular and robust scheme for nonlinear prediction, the method of 
analogs: when one wants to predict the next step of the series, take the current 
point in the embedding space, find a similar one with a known successor, and 
predict that the current point will do the analogous thing. Many refinements are 
possible, such as taking a weighted average of nearest neighbors, or selecting an 
analog at random, with a probability decreasing rapidly with distance. Alter-
nately, one can simply fit non-parametric predictors on the embedding space. 
(See (69) for a review.) Closely related is the idea of noise reduction, using the 
structure of the embedding-space to filter out some of the effects of measure-
ment noise. This can work even when the statistical character of the noise is 
unknown (see (69) again). 
 Determining the number of lags, and the lag itself, is a problem of model 
selection, just as in §2, and can be approached in that spirit. An obvious ap-
proach is to minimize the in-sample forecasting error, as with ARMA models; 
recent work along these lines (70,71) uses the minimum description length prin-
ciple (described in §8.3.1 below) to control over-fitting. A more common proce-
dure for determining the embedding dimension, however, is the false nearest 
neighbor method (72). The idea is that if the current embedding dimension k is 
sufficient to resolve the dynamics, k + 1 would be too, and the reconstructed 
state space will not change very much. In particular, points which were close 
together in the dimension-k embedding should remain close in the dimension-k
+ 1 embedding. Conversely, if the embedding dimension is too small, points that 
are really far apart will be brought artificially close together (just as projecting a 
sphere on to a disk brings together points on the opposite side of a sphere). The 
particular algorithm of Kennel et al. (72), which has proved very practical, is to 
take each point in the k-dimensional embedding, find its nearest neighbor in that 
embedding, and then calculate the distance between them. One then calculates 
how much further apart they would be if one used a k+1-dimensional embed-
ding. If this extra distance is more than a certain fixed multiple of the original 
distance, they are said to be "false nearest neighbors." (Ratios of 2 to 15 are 
common, but the precise value does not seem to matter very much.) One then 
repeats the process at dimension k + 1, stopping when the proportion of false 
nearest neighbors becomes zero, or at any rate sufficiently small. Here, the loss 
function used to guide model selection is the number of false nearest neighbors, 
and the standard prescriptions amount to empirical risk minimization. One rea-
son simple ERM works well here is that the problem is intrinsically finite-
dimensional (via the Takens result). 
 Unfortunately, the data required for calculations of quantities like dimen-
sions and exponents to be reliable can be quite voluminous. Approximately 
102+0.4D data-points are necessary to adequately reconstruct an attractor of dimen-
sion D (73, pp. 317–319). (Even this is more optimistic than the widely quoted, 
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if apparently pessimistic, calculation of (74), that attractor reconstruction with 
an embedding dimension of k needs 42k data-points!) In the early days of the 
application of embedding methods to experimental data, these limitations were 
not well appreciated, leading to many calculations of low-dimensional determi-
nistic chaos in EEG and EKG series, economic time series, etc., which did not 
stand up to further scrutiny. This in turn brought some discredit on the methods 
themselves, which was not really fair. More positively, it also led to the devel-
opment of ideas such as surrogate-data methods. Suppose you have found 
what seems like a good embedding, and it appears that your series was produced 
by an underlying deterministic attractor of dimension D. One way to test this 
hypothesis would be to see what kind of results your embedding method would 
give if applied to similar but non-deterministic data. Concretely, you find a sto-
chastic model with similar statistical properties (e.g., an ARMA model with the 
same power spectrum), and simulate many time series from this model. You 
apply your embedding method to each of these surrogate data series, getting 
the approximate distribution of apparent "attractor" dimensions when there 
really is no attractor. If the dimension measured from the original data is not 
significantly different from what one would expect under this null hypothesis, 
the evidence for an attractor (at least from this source) is weak. To apply surro-
gate data tests well, one must be very careful in constructing the null model, as it 
is easy to use over-simple null models, biasing the test towards apparent deter-
minism. 
 A few further cautions on embedding methods are in order. While in princi-
ple any lag  is suitable, in practice both very long and very short lags lead to 
pathologies. A common practice is to set the lag to the autocorrelation time (see 
above), or the first minimum of the mutual information function (see §7 below), 
the notion being that this most nearly achieves a genuinely "new" measurement 
(75). There is some evidence that the mutual information method works better 
(76). Again, while in principle almost any smooth observation function will do, 
given enough data, in practice some make it much easier to reconstruct the dy-
namics; several indices of observability try to quantify this (77). Finally, it 
strictly applies only to deterministic observations of deterministic systems. Em-
bedding approaches are reasonably robust to a degree of noise in the observa-
tions. They do not cope at all well, however, to noise in the dynamics itself. To 
anthropomorphize a little, when confronted by apparent non-determinism, they 
respond by adding more dimensions, and so distinguishing apparently similar 
cases. Thus, when confronted with data that really are stochastic, they will infer 
an infinite number of dimensions, which is correct in a way, but definitely not 
helpful. These remarks should not be taken to belittle the very real power of 
nonlinear dynamics methods. Applied skillfully, they are powerful tools for un-
derstanding the behavior of complex systems, especially for probing aspects of 
their structure which are not directly accessible. 
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3.5. Filtering and State Estimation

 Suppose we have a state-space model for our time series, and some observa-
tions y, can we find the state x? This is the problem of filtering or state estima-
tion. Clearly, it is not the same as the problem of finding a model in the first 
place, but it is closely related, and also a problem in statistical inference. 
 In this context, a filter is a function which provides an estimate tx̂  of xt on 
the basis of observations up to and including10 time t: tx̂  = f(y0

t). A filter is re-
cursive11 if it estimates the state at t on the basis of its estimate at t – 1 and the 
new observation: tx̂  = f( tx 1ˆ ,yt). Recursive filters are especially suited to online 
use, since one does not need to retain the complete sequence of previous obser-
vations, merely the most recent estimate of the state. As with prediction in gen-
eral, filters can be designed to provide either point estimates of the state, or 
distributional estimates. Ideally, in the latter case, we would get the conditional 
distribution, Pr(Xt = x|Y1

t = y1

t), and in the former case the conditional expecta-
tion, x x Pr(Xt = x|Y1

t = y1

t)dx.
 Given the frequency with which the problem of state estimation shows up in 
different disciplines, and its general importance when it does appear, much 
thought has been devoted to it over many years. The problem of optimal linear
filters for stationary processes was solved independently by two of the "grandfa-
thers" of complex systems science, Norbert Wiener and A.N. Kolmogorov, dur-
ing the Second World War (78,79). In the 1960s, Kalman and Bucy (80–82) 
solved the problem of optimal recursive filtering, assuming linear dynamics, 
linear observations and additive noise. In the resulting Kalman filter, the new 
estimate of the state is a weighted combination of the old state, extrapolated 
forward, and the state that would be inferred from the new observation alone. 
The requirement of linear dynamics can be relaxed slightly with what's called 
the "extended Kalman filter," essentially by linearizing the dynamics around the 
current estimated state. 
 Nonlinear solutions go back to pioneering work of Stratonovich (83) and 
Kushner (84) in the later 1960s, who gave optimal, recursive solutions. Unlike 
the Wiener or Kalman filters, which give point estimates, the Stratonovich-
Kushner approach calculates the complete conditional distribution of the state; 
point estimates take the form of the mean or the most probable state (85). In 
most circumstances, the strictly optimal filter is hopelessly impractical numeri-
cally. Modern developments, however, have opened up some very important 
lines of approach to practical nonlinear filters (86), including approaches that 
exploit the geometry of the nonlinear dynamics (87,88), as well as more mun-
dane methods that yield tractable numerical approximations to the optimal filters 
(89,90). Noise reduction methods (§3.4) and hidden Markov models (§3.6) can 
also be regarded as nonlinear filters. 
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3.6. Symbolic or Categorical Time Series

 The methods we have considered so far are intended for time series taking 
continuous values. An alternative is to break the range of the time series into 
discrete categories (generally only finitely many of them); these categories are 
sometimes called symbols, and the study of these time series symbolic dynam-
ics. Modeling and prediction then reduces to a (perhaps more tractable) problem 
in discrete probability, and many methods can be used that are simply inapplica-
ble to continuous-valued series (10). Of course, if a bad discretization is chosen, 
the results of such methods are pretty well meaningless, but sometimes one gets 
data that are already nicely discrete—human languages, the sequences of bio-
polymers, neuronal spike trains, etc. We shall return to the issue of discretization 
below, but for the moment we will simply consider the applicable methods for 
discrete-valued, discrete-time series, however obtained. 
 Formally, we take a continuous variable z and partition its range into a 
number of discrete cells, each labeled by a different symbol from some alpha-
bet; the partition gives us a discrete variable y = (z). A word or string is just a 
sequence of symbols, y0y1 ... yn. A time series z0

n naturally generates a string 
(z0

n) (z0) (z1) ... (zn). In general, not every possible string can actually be 
generated by the dynamics of the system we're considering. The set of allowed 
sequences is called the language. A sequence that is never generated is said to 
be forbidden. In a slightly inconsistent metaphor, the rules that specify the al-
lowed words of a language are called its grammar. To each grammar there cor-
responds an abstract machine or automaton that can determine whether a given 
word belongs to the language, or, equivalently, generate all and only the allowed 
words of the language. The generative versions of these automata are stochastic, 
i.e., they generate different words with different probabilities, matching the sta-
tistics of (z).
 By imposing restrictions on the forms the grammatical rules can take, or, 
equivalently, on the memory available to the automaton, we can divide all lan-
guages into four nested classes, a hierarchical classification due to Chomsky 
(91). At the bottom are the members of the weakest, most restricted class, the 
regular languages generated by automata within only a fixed, finite memory for 
past symbols (finite state machines). Above them are the context free lan-
guages, whose grammars do not depend on context; the corresponding machines 
are stack automata, which can store an unlimited number of symbols in their 
memory, but on a strictly first-in, first-out basis. Then come the context-
sensitive languages; and at the very top, the unrestricted languages, generated 
by universal computers. Each stage in the hierarchy can simulate all those be-
neath it. 
 We may seem to have departed very far from dynamics, but actually this is 
not so. Because different languages classes are distinguished by different kinds 
of memories, they have very different correlation properties (§3.2), mutual in-
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formation functions (§7), and so forth—see (10) for details. Moreover, it is often 
easier to determine these properties from a system's grammar than from direct 
examination of sequence statistics, especially since specialized techniques are 
available for grammatical inference (92,93). 

3.6.1. Hidden Markov Models

 The most important special case of this general picture is that of regular 
languages. These, we said, are generated by machines with only a finite mem-
ory. More exactly, there is a finite set of states x, with two properties: 

1. The distribution of yt depends solely on xt, and 

2. The distribution of xt+1 depends solely on xt.

That is, the x sequence is a Markov chain, and the observed y sequence is a 
noisy function of that chain. Such models are very familiar in signal processing 
(94), bioinformatics (95), and elsewhere, under the name of hidden Markov 
models (HMMs). They can be thought of as a generalization of ordinary 
Markov chains to the state-space picture described in §3.1. HMMs are particu-
larly useful in filtering applications, since very efficient algorithms exist for 
determining the most probable values of x from the observed sequence y. The 
expectation-maximization (EM) algorithm (96) even allows us to simultane-
ously infer the most probable hidden states and the most probable parameters for 
the model. 

3.6.2. Variable-Length Markov Models

 The main limitation of ordinary HMMs methods, even the EM algorithm, is 
that they assume a fixed architecture for the states, and a fixed relationship 
between the states and the observations. That is to say, they are not geared to-
wards inferring the structure of the model. One could apply the model-selection 
techniques of §2, but methods of direct inference have also been developed. A 
popular one relies on variable-length Markov models, also called context
trees or probabilistic suffix trees (97–100). 
 A suffix here is the string at the end of the y time series at a given time, so, 
for example, the binary series abbabbabb has suffixes b, bb, abb, babb, etc., but 
not bab. A suffix is a context if the future of the series is independent of its past, 
given the suffix. Context-tree algorithms try to identify contexts by iteratively 
considering longer and longer suffixes, until they find one that seems to be a 
context. For instance, in a binary series, such an algorithm would first try 
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whether the suffices a and b are contexts, i.e., whether the conditional distribu-
tion Pr(Yt+1|Yt = a) can be distinguished from Pr(Yt+1|Yt = a, Y–

t-1), and likewise for 
Yt = b. It could happen that a is a context but b is not, in which case the algo-
rithm will try ab and bb, and so on. If one sets xt equal to the context at time t, xt

is a Markov chain. This is called a variable-length Markov model because the 
contexts can be of different lengths. 
 Once a set of contexts has been found, they can be used for prediction. Each 
context corresponds to a different distribution for one-step-ahead predictions, 
and so one just needs to find the context of the current time series. One could 
apply state-estimation techniques to find the context, but an easier solution is to 
use the construction process of the contexts to build a decision tree (§2), where 
the first level looks at Yt, the second at Yt–1, and so forth. 
 Variable-length Markov models are conceptually simple, flexible, fast, and 
frequently more accurate than other ways of approaching the symbolic dynamics 
of experimental systems (101). However, not every regular language can be rep-
resented by a finite number of contexts. This weakness can be remedied by mov-
ing to a more powerful class of models, discussed next. 

3.6.3. Causal-State Models, Observable-Operator Models,  
  and Predictive-State Representations

 In discussing the state-space picture in §3.1 above, we saw that the state of 
a system is basically defined by specifying its future time-evolution, to the ex-
tent that it can be specified. Viewed in this way, a state Xt corresponds to a dis-
tribution over future observables Yt+1

+. One natural way of finding such 
distributions is to look at the conditional distribution of the future observations, 
given the previous history, i.e., Pr(Yt+1

+|Yt

– = yt

–). For a given stochastic process or 
dynamical system, there will be a certain characteristic family of such condi-
tional distributions. One can then consider the distribution-valued process gen-
erated by the original, observed process. It turns out that the former is always a 
Markov process, and that the original process can be expressed as a function of 
this Markov process plus noise. In fact, the distribution-valued process has all 
the properties one would want of a state-space model of the observations 
(48,49). The conditional distributions, then, can be treated as states. 
 This remarkable fact has led to techniques for modeling discrete-valued 
time series, all of which attempt to capture the conditional-distribution states, 
and all of which are strictly more powerful than VLMMs. There are at least 
three: the causal-state models or causal-state machines (CSMs),12 introduced 
by Crutchfield and Young (102), the observable operator models (OOMs) in-
troduced by Jaeger (103), and the predictive state representations (PSRs) in-
troduced by Littman, Sutton, and Singh (104). The simplest way of thinking of 
such objects is that they are VLMMs where a context or state can contain more 
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than one suffix, adding expressive power and allowing them to give compact 
representations of a wider range of processes. (See (105) for more on this point, 
with examples.) 
 All three techniques—CSMs, OOMs and PSRs—are basically equivalent, 
though they differ in their formalisms and their emphases. CSMs focus on repre-
senting states as classes of histories with the same conditional distributions, i.e., 
as suffixes sharing a single context. (They also feature in the "statistical fore-
casting" approach to measuring complexity, discussed in §8.3.2 below.) OOMs 
are named after the operators that update the state; there is one such operator for 
each possible observation. PSRs, finally, emphasize the fact that one does not 
actually need to know the probability of every possible string of future observa-
tions, but just a restricted subset of key trajectories, called "tests." In point of 
fact, all of them can be regarded as special cases of more general prior construc-
tions due to Salmon ("statistical relevance basis") (106,107) and Knight ("meas-
ure-theoretic prediction process") (48,49), which were themselves independent. 
(This area of the literature is more than usually tangled.) 
 Efficient reconstruction algorithms or discovery procedures exist for 
building CSMs (105) and OOMs (103) directly from data. (There is currently no 
such discovery procedure for PSRs, though there are parameter-estimation algo-
rithms (108).) These algorithms are reliable, in the sense that, given enough 
data, the probability that they build the wrong set of states becomes arbitrarily 
small. Experimentally, selecting an HMM architecture through cross-validation 
never does better than reconstruction, and often much worse (105). 
 While these models are more powerful than VLMMs, there are still many 
stochastic processes that cannot be represented in this form; or, rather, their rep-
resentation requires an infinite number of states (109,110). This is mathemati-
cally unproblematic, though reconstruction will then become much harder. (For 
technical reasons, it seems likely to be easier to carry through for OOMs or 
PSRs than for CSMs.) In fact, one can show that these techniques would work 
straightforwardly on continuous-valued, continuous-time processes, if only we 
knew the necessary conditional distributions (48,111). Devising a reconstruction 
algorithm suitable for this setting is an extremely challenging and completely 
unsolved problem; even parameter estimation is difficult, and currently only 
possible under quite restrictive assumptions (112). 

3.6.4. Generating Partitions

 So far, everything has assumed that we are either observing truly discrete 
quantities, or that we have a fixed discretization of our continuous observations. 
In the latter case, it is natural to wonder how much difference the discretization 
makes. The answer, it turns out, is quite a lot; changing the partition can lead to 
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completely different symbolic dynamics (113–115). How then might we choose 
a good partition? 
 Nonlinear dynamics provides an answer, at least for deterministic systems, 
in the idea of a generating partition (10,116). Suppose we have a continuous 
state x and a deterministic map on the state F, as in §3.1. Under a partitioning ,
each point x in the state space will generate an infinite sequence of symbols, 

(x), as follows: (x), (F(x)), (F2(x)), .... The partition  is generating if each 
point x corresponds to a unique symbol sequence, i.e., if  is invertible. Thus, 
no information is lost in going from the continuous state to the discrete symbol 
sequence.13 While one must know the continuous map F to determine exact gen-
erating partitions, there are reasonable algorithms for approximating them from 
data, particularly in combination with embedding methods (75,117,118). When 
the underlying dynamics are stochastic, however, the situation is much more 
complicated (119). 

4. CELLULAR AUTOMATA

Cellular automata are one of the more popular and distinctive classes of 
models of complex systems. Originally introduced by von Neumann as a way of 
studying the possibility of mechanical self-reproduction, they have established 
niches for themselves in foundational questions relating physics to computation 
in statistical mechanics, fluid dynamics, and pattern formation. Within that last, 
perhaps the most relevant to the present purpose, they have been extensively and 
successfully applied to physical and chemical pattern formation, and, somewhat 
more speculatively, to biological development and to ecological dynamics. In-
teresting attempts to apply them to questions like the development of cities and 
regional economies lie outside the scope of this chapter. 

4.1. A Basic Explanation of CA

 Take a board, and divide it up into squares, like a chess- or checkerboard. 
These are the cells. Each cell has one of a finite number of distinct colors—red 
and black, say, or (to be patriotic) red, white, and blue. (We do not allow con-
tinuous shading, and every cell has just one color.) Now we come to the 
"automaton" part. Sitting somewhere to one side of the board is a clock, and 
every time the clock ticks the colors of the cells change. Each cell looks at the 
colors of the nearby cells, and its own color, and then applies a definite rule, the 
transition rule, specified in advance, to decide its color in the next clock-tick; 
and all the cells change at the same time. (The rule can say "stay the same.") 
Each cell is a sort of very stupid computer—in the jargon, a finite-state 
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automaton—and so the whole board is called a cellular automaton, or CA. To 
run it, you color the cells in your favorite pattern, start the clock, and stand back. 
 Let us follow this concrete picture with one more technical and abstract. 
The cells do not have to be colored, of course; all that's important is that each 
cell is in one of a finite number of states at any given time. By custom they're 
written as the integers, starting from 0, but any "finite alphabet" will do. Usually 
the number of states is small, under ten, but in principle any finite number is 
allowed. What counts as the "nearby cells," the neighborhood, varies from 
automaton to automaton; sometimes just the four cells on the principal direc-
tions, sometimes the corner cells, sometimes a block or diamond of larger size; 
in principle any arbitrary shape. You do not need to stick to a chessboard; you 
can use any regular pattern of cells that will fill the plane (or "tessellate" it; an 
old name for cellular automata is tessellation structures). And you do not have 
to stick to the plane; any number of dimensions is allowed. There are various 
tricks for handling the edges of the space; the one which has "all the advantages 
of theft over honest toil" is to assume an infinite board. 

Cellular Automata as Parallel Computers. CA are synchronous massive-
ly parallel computers, with each cell being a finite state transducer, taking input 
from its neighbors and making its own state available as output. From this per-
spective, the remarkable thing about CA is that they are computationally univer-
sal, able to calculate any (classically) computable function; one can use finite-
state machines, the least powerful kind of computer, to build devices equivalent 
to Turing machines, the most powerful kind of computer. The computational 
power of different physically motivated CA is an important topic in complex 
systems (120,121), though it must be confessed that CA with very different 
computational powers can have very similar behavior in most other  respects. 

Cellular Automata as Discrete Field Theories. From the perspective 
of physics, a CA is a "digitized" classical field theory, in which space, time, 
and the field (state) are all discrete. Thus fluid mechanics, continuum mechan-
ics, and electromagnetism can all be simulated by CA14; typically,  however, 
the physical relevance of a CA comes not from accurately simulating some 
field theory at the microscopic level, but from the large-scale phenomena they 
generate. 
 Take, for example, simulating fluid mechanics, where CA are also called 
lattice gases or lattice fluids. In the "HPP" (122) rule, a typical lattice gas with 
a square grid, there are four species of "fluid particle," which travel along the 
four principal directions. If two cells moving in opposite directions try to occupy 
the same location at the same time, they collide, and move off at right angles to 
their original axis Figure 4). Each cell thus contains only an integer number of 
particles, and only a discrete number of values of momentum are possible. If 
one takes averages over reasonably large regions, however, then density and 
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momentum approximately obey the equations of continuous fluid mechanics. 
Numerical experiments show that this rule reproduces many fluid phenomena, 
such as diffusion, sound, shockwaves, etc. However, with this rule, the agree-
ment with fluid mechanics is only approximate. In particular, the square lattice 
makes the large-scale dynamics anisotropic, which is unphysical. This in turn 
can be overcome in several ways—for instance, by using a hexagonal lattice 
(123). The principle here—get the key parts of the small-scale "microphysics" 
right, and the interesting "macrophysics" will take care of itself—is extensively 
applied in studying pattern formation, including such biologically relevant phe-
nomena as phase separation (124), excitable media (125), and the self-assembly 
of micelles (126,127). 

5. AGENT-BASED MODELS

 If there is any one technique associated with complex systems science, it is 
agent-based modeling. An agent-based model is a computational model that 
represents individual agents and their collective behavior. What, exactly, do we 
mean by "agent"? Stuart Kauffman has offered15 the following apt definition: 
"An agent is a thing which does things to things." That is, an agent is a persistent 
thing that has some state we find worth representing, and which interacts with 
other agents, mutually modifying each others' states. The components of an 
agent-based model are a collection of agents and their states, the rules governing 
the interactions of the agents, and the environment within which they live. (The 
environment need not be represented in the model if its effects are constant.) 
The state of an agent can be arbitrarily simple, say just position, or the color of a 
cell in a CA. (At this end, agent-based models blend with traditional stochastic 

Figure 4. Collisions in the HPP lattice gas rule. Horizontal collisions produce vertically mov-
ing particles (top) and vice versa (middle). Particles moving at right angles pass by each other 
unchanged (bottom, omitting the reflections and rotations of this figure). 
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models.) States can also be extremely complicated, including, possibly, sophisti-
cated internal models of the agent's world. 
 Here is an example to make this concrete. In epidemiology, there is a classic 
kind of model of the spread of a disease through a population called an "SIR" 
model (128, §4). It has three classes of people—the susceptible, who have yet to 
be exposed to the disease; the infected, who have it and can pass it on; and the 
resistant or recovered, who have survived the disease and cannot be reinfected. 
A traditional approach to an SIR model would have three variables, namely the 
number of people in each of the three categories, S(t), I(t), R(t), and would have 
some deterministic or stochastic dynamics in terms of those variables. For in-
stance, in a deterministic SIR model, one might have 
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( ) ( ) ( )
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, [37] 

R(t + 1) – R(t) = bI(t), [38] 

which we could interpret by saying that (i) the probability of a susceptible per-
son being infected is proportional to the fraction of the population which is al-
ready infected, (ii) infected people get better at a rate b, and (iii) infected people 
die at a rate c. (This is not a particularly realistic SIR model.) In a stochastic 
model, we would treat the right-hand sides of [36]–[38] as the mean changes in 
the three variables, with (say) Poisson-distributed fluctuations, taking care that, 
e.g., the fluctuation in the aI/(R + S + I) term in [36] is the same as that in [37]. 
The thing to note is that, whether deterministic or stochastic, the whole model is 
cast in terms of the aggregate quantities S, I and R, and those aggregate variables 
are what we would represent computationally. 
 In an agent-based model of the same dynamics, we would represent each
individual in the population as a distinct agent, which could be in one of three 
states, S, I, and R. A simple interaction rule would be that at each time-step, each 
agent selects another from the population entirely at random. If a susceptible 
agent (i.e., one in state S) picks an infectious agent (i.e., one in state I), it be-
comes infected with probability a. Infectious agents die with probability b and 
recover with probability c; recovered agents never change their state. So far, we 
have merely reproduced the stochastic version of [36]–[38], while using many 
more variables. The power of agent-based modeling only reveals itself when we 
implement more interesting interaction rules. For instance, it would be easy to 
assign each agent a position, and make two agents more likely to interact if they 
are close. We could add visible symptoms that are imperfectly associated with 
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the disease, and a tendency not to interact with symptomatic individuals. We 
could make the degree of aversion to symptomatic agents part of the agents' 
state. All of this is easy to implement in the model, even in combination, but not
easy to do in a more traditional, aggregated model. Sometimes it would be all 
but impossible; an excellent case in point is the highly sophisticated model of 
HIV epidemiology produced by Jacquez, Koopman, Simon, and collaborators 
(129,130), incorporating multiple routes of transmission, highly non-random 
mixing of types, and time-varying infectiousness. 
 Agent-based models steer you towards representing individuals, their be-
haviors and their interactions, rather than aggregates and their dynamics. 
Whether this is a good thing depends, of course, on what you know, and what 
you hope to learn. If you know a lot about individuals, agent-based models can 
help you leverage that knowledge into information about collective dynamics. 
This is particularly helpful if the population is heterogeneous, since you can 
represent the different types of individuals in the population by different states 
for agents. This requires a bit of effort on your part, but often not nearly so much 
as it would to represent the heterogeneity in an aggregated model. Conversely, if 
you think you have the collective dynamics down, an ABM will let you check 
whether a candidate for an individual-level mechanism really will produce them. 
(But see §6, below.) 
 Ideally, there are no "mass nouns" in an ABM, nothing represented by a 
smeared-out "how much": everything should be represented by some definite 
number of distinctly located agents. At most, some aggregate variables may be 
stuffed into the environment part of the model, but only simple and homogene-
ous ones. Of course, the level of disaggregation at which it is useful to call 
something an agent is a matter for particular applications, and need not be the 
same for every agent in a model. (E.g., one might want to model an entire organ 
as a single agent, while another, more interesting organ is broken up into multi-
ple interacting agents, along anatomical or functional lines.) Sometimes it's just 
not practical to represent everything which we know is an individual thing by its 
own agent: imagine trying to do chemical thermodynamics by tracking the inter-
actions of a mole of molecules. Such cases demand either giving up on agent-
based modeling (fortunately, the law of mass action works pretty well in chem-
istry), or using fictitious agents that represent substantial, but not too large, col-
lections of individuals. 
 Models describing the collective dynamics of aggregate variables are some-
times called "equation-based models," in contrast to agent-based models. This is 
sloppy, however: it is always possible, though generally tedious and unillumi-
nating, to write down a set of equations that describe the dynamics of an agent-
based model. Rather than drawing a false contrast between agents and equations, 
it would be better to compare ABMs to "aggregate models," "collective models," 
or perhaps "factor models." 
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5.1. Computational Implementation: Agents are Objects

 The nicest way to computationally implement the commitment of distinctly 
representing each agent is to make agents objects, which are, to oversimplify 
slightly, data structures that have internal states, and interact with each other by 
passing messages. While objects are not necessary for agent-based models, they 
do make programming them much easier, especially if the agents have much 
more state than, say, just a position and a type. If you try to implement models 
with sophisticated agents without using objects, the odds are good that you will 
find yourself reinventing well-known features of object-oriented programming. 
(Historically, object-oriented programming began with languages for simulation 
modeling (131).) You might as well save your time, and do those things right,
by using objects in the first place. 
 Generally speaking, computational implementations of ABMs contain many 
non-agent objects, engaged in various housekeeping tasks, or implementing the 
functions agents are supposed to perform. For instance, an agent, say a rat, 
might be supposed to memorize a sequence, say, of turns in a maze. One way of 
implementing this would be to use a linked list, which is an object itself. Such 
objects do not represent actual features of the model, and it should be possible to 
vary them without interfering with the model's behavior. Which objects are 
picked out as agents is to some degree a matter of convenience and taste. It is 
common, for instance, to have mobile agents interacting on astatic environment. 
If the environment is an object, modelers may or may not speak of it as an "envi-
ronment agent," and little seems to hinge on whether or not they do. 
 There are several programming environments designed to facilitate agent-
based modeling. Perhaps the best known of these is (www.swarm.org), which 
works very flexibly with several languages, is extensively documented, and has 
a large user community, though it presently (2004) lacks an institutional home. 
REPAST, while conceptually similar, is open-source (repast.sourceforge.net) and 
is associated with the University of Chicago. STARLOGO, and its successor, 
NETLOGO (ccl.sesp.northwestern.edu/netlogo), are extensions of the popular 
LOGO language to handle multiple interacting "turtles," i.e., agents. Like Logo, 
children can learn to use them (132), but they are fairly easy for adults, too, and 
certainly give a feel for working with ABMs. 

5.2. Three Things Which Are Not Agent-Based Models

 Not everything which involves the word "agent" is connected to agent-
based modeling. 

Representative agent models are not ABMs. In these models, the response 
of a population to environmental conditions is found by picking out a single
typical or representative agent, determining its behavior, and assuming that eve-
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ryone else does likewise. This is sometimes reasonable, but it's clearly diametri-
cally opposed to what an ABM is supposed to be. 

Software agents are not ABMs. Software agents are a very useful and rap-
idly developing technology (133, ch. 2); an agent, here, is roughly a piece of 
code that interacts with other software and with pieces of the real world 
autonomously. Agents index the Web for search engines, engage in automated 
trading, and help manage parts of the North American electrical power grid, 
among other things. Some agent software systems are inspired by ABMs (134). 
When one wants to model their behavior, an ABM is a natural tool (but not the 
only one by any means: see (135)). But a set of software agents running the 
Michigan power grid is not a model of anything, it's doing something. 
 Finally, multi-agent systems (136) and rational agents (137) in artificial 
intelligence are not ABMs. The interest of this work is in understanding, and 
especially designing, systems capable of sophisticated, autonomous cognitive 
behavior; many people in this field would restrict the word "agent" to apply only 
to things capable, in some sense, of having "beliefs, desires, and intentions." 
While these are certainly complex systems, they are not usually intended to be 
models of anything else. One can, of course, press them into service as models 
(138), but generally this will be no more than a heuristic device. 

5.3. The Simplicity of Complex Systems Models

 One striking feature of agent-based models, and indeed of complex systems 
models in general, is how simple they are. Often, agents have only a few possi-
ble states, and only a handful of kinds of interaction. This practice has three mo-
tivations: (i) A model as detailed as the system being studied would be as hard 
to understand as that system. (ii) Many people working in complex systems sci-
ence want to show that a certain set of mechanisms are sufficient to generate 
some phenomenon, like cooperation among unrelated organisms, or the forma-
tion of striped patterns. Hence using simple models, which contain only those 
mechanisms, makes the case. (iii) Statistical physicists, in particular, have a long 
tradition of using highly simplified models as caricatures of real systems. 
 All three motives are appropriate, in their place. (i) is completely unexcep-
tionable; abstracting away from irrelevant detail is always worthwhile, so long 
as it really is irrelevant. (ii) is also fair enough, though one should be careful that 
the mechanisms in one's model can still generate the phenomenon when they 
interact with other effects as well. (iii) works very nicely in statistical physics 
itself, where there are powerful mathematical results relating to the renormaliza-
tion group (139) and bifurcation theory (14), which allow one to extract certain 
kinds of quantitative results from simplified models that share certain qualitative
characteristics with real systems. (We have seen a related principle when dis-
cussing cellular automata models above.) There is, however, little reason to 
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think that these universality results apply to most complex systems, let alone 
ones with adaptive agents! 

6. EVALUATING MODELS OF COMPLEX SYSTEMS

 We do not build models for their own sake; we want to see what they do, 
and we want to compare what they do both to reality and to other models. This 
kind of evaluation of models is a problem for all areas of science, and as such 
little useful general advice can be given. However, there are some issues that are 
peculiar to models of complex systems, or especially acute for them, and I will 
try to provide some guidance here, moving from figuring out just what your 
model does, to comparing your model to data, to comparing it to other models. 

6.1. Simulation

 The most basic way to see what your model does is to run it; to do a simula-
tion. Even though a model is entirely a human construct, every aspect of its be-
havior following logically from its premises and initial conditions, the frailty of 
human nature is such that we generally cannot perceive those consequences, not 
with any accuracy. If the model involves a large number of components that 
interact strongly with each other—if, that is to say, it's a good model of a com-
plex system—our powers of deduction are generally overwhelmed by the mass 
of relevant, interconnected detail. Computer simulation then comes to our aid, 
because computers have no trouble remembering large quantities of detail, nor 
in following instructions. 

6.1.1. Direct Simulation

 Direct simulation—simply starting the model and letting it go—has two 
main uses. One is to get a sense of the typical behavior, or of the range of behav-
ior. The other, more quantitative, use is to determine the distribution of impor-
tant quantities, including time series. If one randomizes initial conditions, and 
collects data over multiple runs, one can estimate the distribution of desired 
quantities with great accuracy. This is exploited in the time-series method of 
surrogate data (above), but the idea applies quite generally. 
 Individual simulation runs for models of complex systems can be reasona-
bly expensive in terms of time and computing power; large numbers of runs, 
which are really needed to have confidence in the results, are correspondingly 
more costly. Few things are more dispiriting than to expend such quantities of 
time and care, only to end up with ambiguous results. It is almost always 



METHODS AND TECHNIQUES OF COMPLEX SYSTEMS SCIENCE 71

worthwhile, therefore, to carefully think through what you want to measure, and 
why, before running anything. In particular, if you are trying to judge the merits 
of competing models, effort put into figuring out how and where they are most
different will generally be well-rewarded. The theory of experimental design 
offers extensive guidance on how to devise informative series of experiments, 
both for model comparison and for other purposes, and by and large the princi-
ples apply to simulations as well as to real experiments. 

6.1.2. Monte Carlo Methods

Monte Carlo is the name of a broad, slightly indistinct family for using 
random processes to estimate deterministic quantities, especially the properties 
of probability distributions. A classic example will serve to illustrate the basic 
idea, on which there are many, many refinements. 
 Consider the problem of determining the area A under an curve given by a 
known but irregular function f(x). In principle, you could integrate f to find this 
area, but suppose that numerical integration is infeasible for some reason. (We 
will come back to this point presently.) A Monte Carlo solution to this problem 
is as follows: pick points at random, uniformly over the square. The probability 
p that a point falls in the shaded region is equal to the fraction of the square oc-
cupied by the shading: p = A/s2. If we pick n points independently, and x of them 
fall in the shaded region, then x/n p (by the law of large numbers), and s2x/n
A. s2x/n provides us with a stochastic estimate of the integral. Moreover, this is a 
probably approximately correct (§2.1.3) estimate, and we can expect, from basic 
probability theory, that the standard deviation of the estimate around its true 
value will be proportional to n–1/2, which is not bad.16 However, when faced with 
such a claim, one should always ask what the proportionality constant is, and 
whether it is the best achievable. Here it is not: the equally simple, if less visual, 
scheme of just picking values of x uniformly and averaging the resulting values 
of f(x) always has a smaller standard deviation (140, ch. 5). 
 This example, while time-honored and visually clear, does not show Monte 
Carlo to its best advantage; there are few one-dimensional integrals that cannot 
be done better by ordinary, non-stochastic numerical methods. But numerical 
integration becomes computationally intractable when the domain of integration 
has a large number of dimensions, where "large" begins somewhere between 
four and ten. Monte Carlo is much more indifferent to the dimensionality of the 
space: we could replicate our example with a 999-dimensional hypersurface in a 
1000-dimensional space, and we'd still get estimates that converged like n–1/2, so 
achieving an accuracy of  will require evaluating the function f only O( –2)
times. 
 Our example was artificially simple in another way, in that we used a uni-
form distribution over the entire space. Often, what we want is to compute the 
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expectation of some function f(x) with a nonuniform probability p(x). This is just 
an integral, f(x)p(x)dx, so we could sample points uniformly and compute 
f(x)p(x) for each one. But if some points have very low probability, so they only 
make a small contribution to the integral, spending time evaluating the function 
there is a bit of a waste. A better strategy would be to pick points according to 
the actual probability distribution. This can sometimes be done directly, espe-
cially if p(x) is of a particularly nice form. A very general and clever indirect 
scheme is as follows (14). We want a whole sequence of points, x1, x2, ... xn. We 
pick the first one however we like, and after that we pick successive points ac-
cording to some Markov chain: that is, the distribution of xi+1 depends only on xi,
according to some fixed function q(xi, xi+1). Under some mild conditions,17 the 
distribution of xt approaches a stationary distribution q*(x) at large times t. If we 
could ensure that q*(x) = p(x), we would know that the Markov chain was con-
verging to our distribution, and then, by the ergodic theorem, averaging f(x)
along a trajectory would give the expected value of f(x). One way to ensure this 
is to use the "detailed balance" condition of the invariant distribution, that the 
total probability of going from x to y must equal the total probability of going 
the other way: 

p(x)q(x,y) = p(y), [39] 

( , ) ( )
( , )

( , ) ( )

q x y p y
h x y

q y x p x
= . [40] 

So now we just need to make sure that [40] is satisfied. One way to do this is to 
set q(x,y) = min(1,h(x,y)); this was the original proposal of Metropolis et al. 
(141). Another is q(x,y) = (h(x,y))/(1 + h(x,y)). This method is what physicists 
usually mean by "Monte Carlo," but statisticians call it Markov chain Monte 
Carlo, or "MCMC." While we can now estimate the properties of basically arbi-
trary distributions, we no longer have independent samples, so evaluating the 
accuracy of our estimates is no longer a matter of trivial probability.18 An im-
mense range of refinements have been developed over the last fifty years, ad-
dressing these and other points; see the further reading section for details. 
 Keep in mind that Monte Carlo is a stochastic simulation method only in a 
special sense—it simulates the probability distribution p(x), not the mecha-
nism that generated that distribution. The dynamics of Markov chain Monte 
Carlo, in particular, often bear no resemblance whatsoever to those of the 
real system.19 Since the point of Monte Carlo is to tell us about the properties of 
p(x) (what is the expectation value of this function? what is the probability of 
configurations with this property? etc.), the actual trajectory of the Markov 
chain is of no interest. This point sometimes confuses those more used to direct 
simulation methods. 
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6.2. Analytical Techniques

 Naturally enough, analytical techniques are not among the tools that first 
come to mind for dealing with complex systems; in fact, they often do not come 
to mind at all. This is unfortunate, because a lot of intelligence has been devoted 
to devising approximate analytical techniques for classes of models that include 
many of those commonly used for complex systems. A general advantage of 
analytical techniques is that they are often fairly insensitive to many details of 
the model. Since any model we construct of a complex system is almost cer-
tainly much simpler than the system itself, a great many of its details are just 
wrong. If we can extract nontrivial results insensitive to those details, we have 
less reason to worry about this. 
 One particularly useful, yet neglected, body of approximate analytical tech-
niques relies on the fact that many complex systems models are Markovian. In 
an agent-based model, for instance, the next state of an agent generally depends 
only on its present state, and the present states of the agents it interacts with. If 
there is a fixed interaction graph, the agents form a Markov random field on that 
graph. There are now very powerful and computationally efficient methods for 
evaluating many properties of Markov chains (58,142), Markov random fields 
(143), and (closely related) graphical models (144) without simulation. The re-
cent books of Peyton Young (145) and Sutton (146) provide nice instances of 
using analytical results about Markov processes to solve models of complex 
social systems, without impractical numerical experiments. 

6.3. Comparisons with Data

6.3.1. General Issues

 We can only compare particular aspects of a model of a system to particular 
kinds of data about that system. The most any experimental test can tell us, 
therefore, is how similar the model is to the system in that respect. One may 
think of an experimental comparison as a test for a particular kind of error, one 
of the infinite number of mistakes which we could make in building a model. A 
good test is one which is very likely to alert us to an error, if we have made it, 
but not otherwise (50). 
 These ought to be things every schoolchild knows about testing hypotheses. 
It is very easy, however, to blithely ignore these truisms when confronted with, 
on the one hand, a system with many strongly interdependent parts, and, on the 
other hand, a model that tries to mirror that complexity. We must decide which 
features of the model ought to be similar to the system, and how similar. It is 
important not only that our model be able to adequately reproduce those phe-
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nomena, but that it not entail badly distorted or nonexistent phenomena in other 
respects. 

6.3.2. Two Stories and Some Morals

 Let me give two examples from very early in the study of complex systems, 
which nicely illustrate some fundamental points. 
 The first has to do with pattern formation in chemical oscillators (147). Cer-
tain mixtures of chemicals in aqueous solution, most famously the Belusov-
Zhabotinsky reagent, can not only undergo cyclic chemical reactions, but will 
form rotating spiral waves, starting from an initial featureless state. This is a 
visually compelling example of self-organization, and much effort has been de-
voted to understanding it. One of the more popular early models was the "Brus-
selator" advanced by Prigogine and his colleagues at the Free University of 
Brussels; many similarly named variants developed. Brusselator-type models 
correctly predicted that these media would support spiral waves. They all, fur-
ther, predicted that the spirals would form only when the homogeneous configu-
ration was unstable, and that then they would form spontaneously. It proved 
very easy, however, to prepare the Belusov-Zhabotisnky reagent in such a way 
that it was "perfectly stable in its uniform quiescence," yet still able to produce 
spiral waves if excited (e.g., by being touched with a hot wire) (148). The Brus-
selator and its variants were simply unable to accommodate these phenomena, 
and had to be discarded in favor of other models. The fact that these were quali-
tative results, rather than quantitative ones, if anything made it more imperative 
to get rid of the Brusselator. 
 The second story concerns the work of Varela and Maturana on "autopoe-
sis." In a famous paper (149), they claimed to exhibit a computational model of 
a simple artificial chemistry where membranes not only formed spontaneously, 
but a kind of metabolism self-organized to sustain the membranes. This work 
influenced not just complex systems science but theoretical biology, psychol-
ogy, and even sociology (150). When, in the 1990s, McMullin made the first 
serious effort to reproduce the results, based on the description of the model in 
the paper, that description proved not to match the published simulation results. 
The discrepancy was only resolved by the fortuitous rediscovery of a mass of 
papers, including Fortran code, that Varela had left behind in Chile when forced 
into exile by the fascist regime. These revealed a crucial change in one particular 
reaction made all the difference between successful autopoesis and its absence. 
(For the full story, see (151,152).) Many similar stories could be told of other 
models in complex systems (153); this one is distinguished by McMullin's un-
usual tenacity in trying to replicate the results, Varela's admirable willingness to 
assist him, and the happy ending. 
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 The story of autopoesis is especially rich in morals. (1) Replication is essen-
tial. (2) It is a good idea to share not just data but programs. (3) Always test the 
robustness of our model to changes in its parameters. (This is fairly common.) 
(4) Always test your model for robustness to small changes in qualitative as-
sumptions. If your model calls for a given effect, there are usually several 
mechanisms that could accomplish it. If it does not matter which mechanism 
you actually use, the result is that much more robust. Conversely, if it does mat-
ter, the overall adequacy of the model can be tested by checking whether that
mechanism is actually present in the system. Altogether too few people perform 
such tests. 

6.3.3. Comparing Macro-data and Micro-models

 Data are often available only about large aggregates, while models, espe-
cially agent-based models, are about individual behavior. One way of comparing 
such models to data is to compute the necessary aggregates, from direct simula-
tion, Monte Carlo, etc. The problem is that many different models can give the 
same aggregated behavior, so this does not provide a powerful test between dif-
ferent models. Ideally, we'd work back from aggregate data to individual behav-
iors, which is known, somewhat confusingly, as ecological inference. In 
general, the ecological inference problem itself does not have a unique solution. 
But the aggregate data, if used intelligently, can often put fairly tight constraints 
on the individual behaviors, and micro-scale can be directly checked against 
those constraints. Much of the work here has been done by social scientists, es-
pecially American political scientists concerned with issues arising from the 
Voting Rights Act (154), but the methods they have developed are very general, 
and could profitably be applied to agent-based models in the biological sciences, 
though, to my knowledge, they have yet to be. 

6.4. Comparison to Other Models

 Are there other ways of generating the data? There generally are, at least if 
"the data" are some very gross, highly summarized pattern. This makes it impor-
tant to look for differential signatures, places where discrepancies between dif-
ferent generative mechanisms give one some leverage. Given two mechanisms 
that can both account for our phenomenon, we should look for some other quan-
tity whose behavior will be different under the two hypotheses. Ideally, in fact, 
we would look for the statistic on which the two kinds of model are most diver-
gent. The literature on experimental design is relevant here again, since it con-
siders such problems under the heading of model discrimination, seeking to 
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maximize the power of experiments (or simulations) to distinguish between dif-
ferent classes of models (155,156). 
 Perhaps no aspect of methodology is more neglected in complex systems 
science than this one. While it is always perfectly legitimate to announce a new 
mechanism as a way of generating a phenomenon, it is far too common for it to 
be called the way to do it, and vanishingly rare to find an examination of how it 
differs from previously proposed mechanisms. Newman and Palmer's work on 
extinction models (157) stands out in this regard for its painstaking examination 
of the ways of discriminating between the various proposals in the literature. 

7. INFORMATION THEORY

 Information theory began as a branch of communications engineering, 
quantifying the length of codes needed to represent randomly varying signals, 
and the rate at which data can be transmitted over noisy channels. The concepts 
needed to solve these problems turn out to be quite fundamental measures of the 
uncertainty, variability, and the interdependence of different variables. Informa-
tion theory thus is an important tool for studying complex systems, and in addi-
tion is indispensable for understanding complexity measures (§8). 

7.1. Basic Definitions

 Our notation and terminology follows that of Cover and Thomas's standard 
textbook (158). 
 Given a random variable X taking values in a discrete set , the entropy or 
information content H[X] of X is 

2[ ] Pr( ) log Pr( )
a

H X X a X a= = . [41] 

H[X] is the expectation value of –log2 Pr(X). It represents the uncertainty in X,
interpreted as the mean number of binary distinctions (bits) needed to identify 
the value of X. Alternately, it is the minimum number of bits needed to encode 
or describe X. Note that H[X] = 0 if and only if X is (almost surely) constant. 
 The joint entropy H[X,Y] of two variables X and Y is the entropy of their 
joint distribution: 

2
,

[ , ] Pr( , ) log Pr( , )
a b

H X Y X a Y b X a Y b= = = = . [42] 

 The conditional entropy of X given Y is 
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H[X|Y] H[X,Y] – H[Y]. [43] 

H[X|Y] is the average uncertainty remaining in X, given a knowledge of Y.
 The mutual information I[X;Y] between X and Y is 

I[X;Y] H[X] – H[X|Y]. [44] 

It gives the reduction in X's uncertainty due to knowledge of Y and is symmetric 
in X and Y. We can also define higher-order mutual informations, such as the 
third-order information I[X;Y;Z],

I[X;Y;Z] H[X] + H[Y] + H[Z] – H[X,Y,Z], [45] 

and so on for higher orders. These functions reflect the joint dependence among 
the variables. 
 Mutual information is a special case of the relative entropy, also called the 
Kullback-Leibler divergence (or distance). Given two distributions (not vari-
ables), P and Q, the entropy of Q relative to P is 

P( )
(P || Q) ( ) log

Q( )x

x
D P x

x
. [46] 

D measures how far apart the two distributions are, since D(P||Q)  0, and 
D(P||Q) = 0 implies the two distributions are equal almost everywhere. The di-
vergence can be interpreted either in terms of codes (see below), or in terms of 
statistical tests (159). Roughly speaking, given n samples drawn from the distri-
bution P, the probability of our accepting the false hypothesis that the distribu-
tion is Q can go down no faster than 2–nD(P||Q). The mutual information I[X;Y] is 
the divergence between the joint distribution Pr(X,Y), and the product of the 
marginal distributions, Pr(X)Pr(Y), and so measures the departure from inde-
pendence.
 Some extra information-theoretic quantities make sense for time series and 
stochastic processes. Supposing we have a process X  = ...,X–2,X–1,X0,X1,X2,..., we 
can define its mutual information function by analogy with the autocovariance 
function (see §3.2), 

( , ) [ ; ]s tX
I s t I X X= , [47] 

( ) [ ; ]t tX
I I X X += , [48] 
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where the second form is valid only for strictly stationary processes. The mutual 
information function measures the degree to which different parts of the series 
are dependent on each other. 
 The entropy rate h of a stochastic process is 

1
0lim [ | ]LL

h H X X , [49] 

1
0[ | ]H X X= . [50] 

(the limit always exists for stationary processes), where h measures the process's 
unpredictability, in the sense that it is the uncertainty which remains in the next 
measurement even given complete knowledge of its past. In nonlinear dynamics, 
h is called the Kolmogorov-Sinai (KS) entropy.
 For continuous variables, one can define the entropy via an integral, 

H[X]  – p(x) log p(x)dx, [51] 

with the subtlety that the continuous entropy not only can be negative, but de-
pends on the coordinate system used for x. The relative entropy also has the ob-
vious definition, 

( )
(P || Q) ( ) log

( )

p x
D p x dx

q x
, [52] 

but is coordinate-independent and non-negative. So, hence, is the mutual infor-
mation. 

Optimal Coding. One of the basic results of information theory concerns 
codes, or schemes for representing random variables by bit strings. That is, we 
want a scheme that associates each value of a random variable X with a bit 
string. Clearly, if we want to keep the average length of our code-words small, 
we should give shorter codes to the more common values of X. It turns out that 
the average code-length is minimized if we use –log Pr(x) bits to encode x, and it 
is always possible to come within one bit of this. Then, on average, we will use 
E[–log Pr(x)] = H[X] bits. 
 This presumes we know the true probabilities. If we think the true distribu-
tion is Q when it is really P, we will, on average, use E[–log Q(x)] H[X]. This 
quantity is called the cross-entropy or inaccuracy, and is equal to H[X] + 
D(P||Q). Thus, finding the correct probability distribution is equivalent to mini-
mizing the cross-entropy, or the relative entropy (160). 
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The Khinchin Axioms and Rényi Information. In 1953, A.I. Khinchin 
published a list of four reasonable-looking axioms fora measure of the informa-
tion H[X] associated with a random variable X (161). He then proved that the 
Shannon information was the unique functional satisfying the axioms, up to an 
overall multiplicative constant. (The choice of this constant is equivalent to the 
choice of the base for logarithms.) The axioms were as follows. 

The information is a functional of the probability distribution of X,
and not on any of its other properties. In particular, if f is any in-
vertible function, H[X] = H[f(X)].

The information is maximal for the uniform distribution, where all 
events are equally probable. 

The information is unchanged by enlarging the probability space 
with events of zero probability. 

If the probability space is divided into two subspaces, so that X is 
split into two variables Y and Z, the total information is equal to the 
information content of the marginal distribution of one subspace, 
plus the mean information of the conditional distribution of the 
other subspace: H[X] = H[Y] + E[H(Z|Y)].

A similar axiomatic treatment can be given for the mutual information and the 
relative entropy. 
 While the first three of Khinchin's axioms are all highly plausible, the fourth 
is somewhat awkward. It is intuitively more plausible to merely require that, if Y
and Z are independent, then H[Y,Z] = H[Y] + H[Z]. If the fourth axiom is weak-
ened in this way, however, there is no longer only a single functional satisfying 
the axioms. Instead, any of the infinite family of entropies introduced by Rényi 
satisfies the axioms. The Rényi entropy of order , with  any non-negative 
real number, is 

: 0

1
[ ] log

1
i

i
i p

H X p
>

 [53] 

in the discrete case, and the corresponding integral in the continuous case. The 
parameter  can be thought of as gauging how strongly the entropy is biased 
towards low-probability events. As  0, low-probability events count more, 
until at  = 0, all possible events receive equal weight. (This is sometimes called 
the topological entropy.) As , only the highest-probability event contrib-
utes to the sum. One can show that, as  1, H [X] H[X], i.e., one recovers 
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the ordinary Shannon entropy in the limit. There are entropy rates corresponding 
to all the Rényi entropies, defined just like the ordinary entropy rate. For dy-
namical systems, these are related to the fractal dimensions of the attractor 
(162,163). 
 The Rényi divergences bear the same relation to the Rényi entropies as 
the Kullback-Leibler divergence does to the Shannon entropy. The defining 
formula is 

1
(P || Q) log

1
i

i
i

p
D q

q
, [54] 

and similarly for the continuous case. Once again, 1lim D (P||Q) = D(P||Q). 
For all  > 0, D (P||Q)  0, and is equal to zero if and only if P and Q are the 
same. (If  = 0, then a vanishing Rényi divergence only means that the supports 
of the two distributions are the same.) The Rényi entropy H [X] is nonincreasing 
as  grows, whereas the Rényi divergence D (P||Q) is nondecreasing. 

Estimation of Information-Theoretic Quantities. In applications, we will 
often want to estimate theoretic quantities, such as the Shannon entropy or the 
mutual information, from empirical or simulation data. Restricting our attention, 
for the moment, to the case of discrete-valued variables, the empirical distribu-
tion will generally converge on the true distribution, and so the entropy (say) of 
the empirical distribution ("sample entropy") will also converge on the true en-
tropy. However, it is not the case that the sample entropy is an unbiased estimate 
of the true entropy. The Shannon (and Rényi) entropies are measures of varia-
tion, like the variance, and sampling tends to reduce variation. Just as the sample 
variance is a negatively biased estimate of the true variance, sample entropy is a 
negatively biased estimate of the true entropy, and so sample mutual information 
is a positively biased estimate of true information. Understanding and control-
ling the bias, as well as the sampling fluctuations, can be very important. 
 Victor (164) has given an elegant method for calculating the bias of the 
sample entropy; remarkably, the leading-order term depends only on the alpha-
bet size k and the number of samples N, and is (k –1)/2N. Higher-order terms, 
however, depend on the true distribution. Recently, Kraskov et al. (165) have 
published an adaptive algorithm for estimating mutual information, which has 
very good properties in terms of both bias and variance. Finally, the estimation 
of entropy rates is a somewhat tricky matter. The best practices are to either use 
an algorithm of the type given by (166), or to fit a properly dynamical model. 
(For discrete data, variable-length Markov chains, discussed in §3.6.2 above, 
generally work very well, and the entropy rate can be calculated from them very 
simply.) Another popular approach is to run one's time series through a standard 
compression algorithm, such as gzip, dividing the size in bits of the output by 
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the number of symbols in the input (167). This is an absolutely horrible idea; 
even under the circumstances under which it gives a consistent estimate of the 
entropy rate, it converges much more slowly, and runs more slowly, than em-
ploying either of the two techniques just mentioned (168,169).20

7.2. Applications of Information Theory

 Beyond its original home in communications engineering, information the-
ory has found a multitude of applications in statistics (159,160) and learning 
theory (144,170). Scientifically, it is very natural to consider some biological 
systems as communications channels, and so analyze their information content; 
this has been particularly successful for biopolymer sequences (171) and espe-
cially for neural systems, where the analysis of neural codes depends vitally on 
information theory (172,173). However, there is nothing prohibiting the applica-
tion of information theory to systems that are not designed to function as com-
munications devices; the concepts involved require only well-defined 
probability distributions. For instance, in nonlinear dynamics (174,175) informa-
tion-theoretic notions are very important in characterizing different kinds of 
dynamical system (see also §3.6). Even more closely tied to complex systems 
science is the literature on "physics and information" or "physics and computa-
tion," which investigates the relationships between the mechanical principles of 
physics and information theory, e.g., Landauer's principle, that erasing (but not 
storing) a bit of information at temperature T produces kBT ln 2 joules of heat, 
where kB is Boltzmann's constant. 

8. COMPLEXITY MEASURES

 We have already given some thought to complexity, both in our initial 
rough definition of "complex system" and in our consideration of machine learn-
ing and Occam's Razor. In the latter, we saw that the relevant sense 
of"complexity" has to do with families of models: a model class is complex if it 
requires large amounts of data to reliably find the best model in the class. On the 
other hand, we initially said that a complex system is one with many highly 
variable, strongly interdependent parts. Here, we will consider various proposals 
for putting some mathematical spine into that notion of a system's complexity, 
as well as the relationship to the notion of complexity of learning. 
 Most measures of complexity for systems formalize the intuition that some-
thing is complex if it is difficult to describe adequately. The first mathematical 
theory based on this idea was proposed by Kolmogorov; while it is not good for 
analyzing empirical complex systems, it was very important historically, and 
makes a good point of entry into the field. 



82 C. R. SHALIZI 

8.1. Algorithmic Complexity

 Consider a collection of measured data-values, stored in digitized form on a 
computer. We would like to say that they are complex if they are hard to de-
scribe, and measure their complexity by the difficulty of describing them. The 
central idea of Kolmogorov complexity (proposed independently by Solomonoff 
(176) and Chaitin) is that one can describe the data set by writing a program 
which will reproduce the data. The difficulty of description is then measured by 
the length of the program. Anyone with much experience of other people's code 
will appreciate that it is always possible to write a longer, slower program to do 
a given job, so what we are really interested in is the shortest program that can 
exactly replicate the data. 
 To introduce some symbols, let x be the data, and |x| their size in bits. The 
Kolmogorov or algorithmic complexity of x, K(x), is the length of the shortest 
program that will output x and then stop.21 Clearly, there is always some pro-
gram which will output x and then stop, for instance, "print(x); end." Thus 
K(x)  |x| + c, where c is the length of the print and end instructions. This is what 
one might call a literal description of the data. If one cannot do better than this—
if K(x)  |x|—then x is highly complex. Some data, however, is highly com-
pressible. For instance, if x consists of the second quadrillion digits of , a very 
short program suffices to generate it.22

 As you may already suspect, the number of simple data sets is quite limited. 
Suppose we have a data set of size n bits, and we want to compress it by k bits, 
i.e., find a program for it which is n – k bits long. There are at most 2n-k programs 
of that length, so of all the 2n data sets of size n, the fraction that can be com-
pressed by k bits is at most 2–k. The precise degree of compression does not mat-
ter—when we look at large data sets, almost all of them are highly complex. If 
we pick a large data set at random, then the odds are very good that it will be 
complex. We can state this more exactly if we think about our data as consisting 
of the first n measurements from some sequence, and let n grow. That is, x = x1

n,
and we are interested in the asymptotic behavior of K(x1

n). If the measurements 
xi are independent and identically distributed (IID), then K(x1

n)/|x|  1 almost 
surely; IID sequences are incompressible. If x is a realization of a stationary 
(but not necessarily IID) random process X , then (177,10) 

1( )
lim ( )

n

n

K X
h X

n
=E , [55] 

the entropy rate (§7) of X . Thus, random data has high complexity, and the 
complexity of a random process grows at a rate that just measures its unpredict-
ability. 
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 This observation goes the other way: complex data look random. The heu-
ristic idea is that if there were any regularities in the data, we could use them to 
shave at least a little bit off the length of the minimal program. What one can 
show formally is that incompressible sequences have all the properties of IID 
sequences—they obey the law of large numbers and the central limit theorem, 
pass all statistical tests for randomness, etc. In fact, this possibility, of defining 
"random" as "incompressible," is what originally motivated Kolmogorov's work 
(107, ch. 3). 
 Kolmogorov complexity is thus a very important notion for the foundations 
of probability theory, and it has extensive applications in theoretical computer 
science (177) and even some aspects of statistical physics (178). Unfortunately, 
it is quite useless as a measure of the complexity of natural systems. This is so 
for two reasons. First, as we have just seen, it is maximized by independent ran-
dom variables; we want strong dependence. Second, and perhaps more funda-
mental, it is simply not possible to calculate Kolmogorov complexity. For deep 
reasons related to Gödel's Theorem, there cannot be any procedure for calculat-
ing K(x), nor are there any accurate approximation procedures (177). 
 Many scientists are strangely in denial about the Kolmogorov complexity, 
in that they think they can calculate it. Apparently unaware of the mathematical 
results, but aware of the relationship between Kolmogorov complexity and data 
compression, they reason that file compression utilities should provide an esti-
mate of the algorithmic information content. Thus one finds many papers which 
might be titled gzip as a measure of complexity,"23 and the practice is even 
recommended by some otherwise-reliable sources (e.g., (73)). However, this is 
simply a confused idea, with absolutely nothing to be said in its defense. 

8.2. Refinements of Algorithmic Complexity 

 We saw just now that algorithmic information is really a measure of ran-
domness, and that it is maximized by collections of independent random vari-
ables. Since complex systems have many strongly dependent variables, it 
follows that the Kolmogorov notion is not the one we really want to measure. It 
has long been recognized that we really want something which is small both for 
systems which are strongly ordered (i.e., have only a small range of allowable 
behavior) and for those which are strongly disordered (i.e., have independent 
parts). Many ways of modifying the algorithmic information to achieve this have 
been proposed; two of them are especially noteworthy. 

8.2.1. Logical Depth

 Bennett (179–181) proposed the notion of the logical depth of data as a 
measure of its complexity. Roughly speaking, the logical depth L(x) of x is the 
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number of computational steps the minimal program for x must execute. For 
incompressible data, the minimal program is print(x), so L(x)  |x|. For peri-
odic data, the minimal program cycles over printing out one period over and 
over, so L(x)  |x| again. For some compressible data, however, the minimal 
program must do nontrivial computations, which are time-consuming. Thus, to 
produce the second quadrillion digits of , the minimal program is one that cal-
culates the digits, and this takes considerably more time than reading them out 
of a list. Thus,  is deep, while random or periodic data are shallow. 
 While logical depth is a clever and appealing idea, it suffers from a number 
of drawbacks. First, real data are not, so far as we know, actually produced by 
running their minimal programs,24 and the run-time of that program has no 
known physical significance, and that's not for lack of attempts to find one 
(182). Second, and perhaps more decisively, there is still no procedure for find-
ing the minimal program. 

8.2.2. Algorithmic Statistics

 Perhaps the most important modification of the Kolmogorov complexity is 
that proposed by Gács, Tromp and Vitanyi (183), under the label of "algorithmic 
statistics." Observe that, when speaking of the minimal program for x, I said 
nothing about the inputs to the program; these are to be built in to the code. It is 
this which accounts for the length of the programs needed to generate random 
sequences: almost all of the length of print(x) comes from x, not print(). 
This suggests splitting the minimal program into two components, a "model" 
part, the program properly speaking, and a "data" part, the inputs to the program. 
We want to put all the regularities in x into the model, and all the arbitrary, noisy 
parts of x into the inputs. Just as in probability theory a "statistic" is a function of 
the data that summarizes the information they convey, Gács et al. regard the 
model part of the program as an algorithmic statistic, summarizing its regulari-
ties. To avoid the trivial regularity of print() when possible, they define a no-
tion of a sufficient algorithmic statistic, based on the idea that x should be in 
some sense a typical output of the model (see their paper for details). They then 
define the complexity of x, or, as they prefer to call it, the sophistication, as the 
length of the shortest sufficient algorithmic statistic. 
 Like logical depth, sophistication is supposed to discount the purely random 
part of algorithmic complexity. Unlike logical depth, it stays within the confines 
of description in doing so; programs, here, are just a particular, mathematically 
tractable, kind of description. Unfortunately, the sophistication is still uncom-
putable, so there is no real way of applying algorithmic statistics. 



METHODS AND TECHNIQUES OF COMPLEX SYSTEMS SCIENCE 85

8.3. Statistical Measures of Complexity

 The basic problem with algorithmic complexity and its extensions is that 
they are all about finding the shortest way of exactly describing a single con-
figuration. Even if we could compute these measures, we might suspect, on the 
basis of our discussion of over-fitting in §2 above, that this is not what we want. 
Many of the details of any particular set of data are just noise, and will not gen-
eralize to other data sets obtained from the same system. If we want to charac-
terize the complexity of the system, it is precisely the generalizations that we 
want, and not the noisy particulars. Looking at the sophistication, we saw the 
idea of picking out, from the overall description, the part which describes the 
regularities of the data. This idea becomes useful and operational when we 
abandon the goal of exact description, and allow ourselves to recognize that the 
world is full of noise, which is easy to describe statistically; we want a statisti-
cal, and not an algorithmic, measure of complexity. 
 I will begin with what is undoubtedly the most widely used statistical meas-
ure of complexity, Rissanen's stochastic complexity, which can also be consid-
ered a method of model selection. Then I will look at three attempts to isolate 
the complexity of the system as such, by considering how much information 
would be required to predict its behavior, if we had an optimal statistical model 
of the system. 

8.3.1. Stochastic Complexity and the Minimum Description Length

 Suppose we have a statistical model with some parameter , and we observe 
the data x. The model assigns a certain likelihood to the data, Pr (X = x). One 
can make this into a loss function by taking its negative logarithm: L( ,x) = –log 
Pr (X = x). Maximum likelihood estimation minimizes this loss function. We 
also learned, in §7, that if Pr  is the correct probability distribution, the optimal 
coding scheme will use –log Pr (X = x) bits to encode x. Thus, maximizing the 
likelihood can also be thought of as minimizing the encoded length of the data. 
 However, we do not yet have a complete description: we have an encoded 
version of the data, but we have not said what the encoding scheme, i.e., the 
model, is. Thus, the total description length has two parts: 

C(x, , ) = L(x, ) + D( , ), [56] 

where D( , ) is the number of bits we need to specify  from among the set of 
all our models . L(x, ) represents the "noisy" or arbitrary part of the descrip-
tion, the one which will not generalize; the model represents the part which does 
generalize. If D( , ) gives short codes to simple models, we have the desired 
kind of tradeoff, where we can reduce the part of the data that looks like noise 
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only by using a more elaborate model. The minimum description length prin-
ciple (184,185) enjoins us to pick the model that minimizes the description 
length, and the stochastic complexity of the data is that minimized description-
length: 

MDL arg min ( , , )C x= , [57] 

SC min ( , , )C x= . [58] 

Under not-too-onerous conditions on the underlying data-generating process and 
the model class  (185, ch. 3), as we provide more data MDL will converge on 
the model in  that minimizes the generalization error, which here is just the 
same as minimizing the Kullback-Leibler divergence from the true distribution.25

 Regarded as a principle of model selection, MDL has proved very success-
ful in many applications, even when dealing with quite intricate, hierarchically 
layered model classes ((186) presents a nice recent application to a biomedical 
complex system; see §3.4 for applications to state-space reconstruction.) It is 
important to recognize, however, that most of this success comes from carefully 
tuning the model-coding term D( , ) so that models that do not generalize well 
turn out to have long encodings. This is perfectly legitimate, but it relies on the 
tact and judgment of the scientist, and often, in dealing with a complex system, 
we have no idea, or at least no good idea, what generalizes and what does not. If 
we were malicious, or short-sighted, we could always ensure that the particular 
data we got have a stochastic complexity of just one bit.26 The model that gives 
us this complexity will then have absolutely horrible generalization properties.27

 Whatever its merits as a model selection method, stochastic complexity 
does not make a good measure of the complexity of natural systems. There are 
at least three reasons for this. 

1. The dependence on the model-encoding scheme, already dis-
cussed. 

2. The log-likelihood term, L(x, ) in CSC can be decomposed into 
two parts, one of which is related to the entropy rate of the 
data-generating process, and so reflects its intrinsic unpredict-
ability. The other, however, indicates the degree to which even 
the most accurate model in  is misspecified. Thus it reflects 
our ineptness as modelers, rather than any characteristic of the 
process. 

3. Finally, the stochastic complexity reflects the need to specify 
some particular model, and to represent this specification. 
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While this is necessarily a part of the modeling process for us, 
it seems to have no physical significance; the system does not 
need to represent its organization, it just has it. 

8.3.2. Complexity via Prediction

Forecast Complexity and Predictive Information. Motivated in part by 
concerns such as these, Grassberger (187) suggested a new and highly satisfac-
tory approach to system complexity: complexity is the amount of information 
required for optimal prediction. Let us first see why this idea is plausible, and 
then see how it can be implemented in practice. (My argument does not follow 
that of Grassberger particularly closely. Also, while I confine myself to time 
series, for clarity, the argument generalizes to any kind of prediction (188).) 
 We have seen that there is a limit on the accuracy of any prediction of a 
given system, set by the characteristics of the system itself (limited precision of 
measurement, sensitive dependence on initial conditions, etc.). Suppose we had 
a model that was maximally predictive, i.e., its predictions were at this limit of 
accuracy. Prediction, as I said, is always a matter of mapping inputs to outputs; 
here the inputs are the previous values of the time series. However, not all as-
pects of the entire past are relevant. In the extreme case of independent, identi-
cally distributed values, no aspects of the past are relevant. In the case of 
periodic sequences with period p, one only needs to know which of the p phases 
the sequence is in. If we ask how much information about the past is relevant in 
these two cases, the answers are clearly 0 and log p, respectively. If one is deal-
ing with a Markov chain, only the present state is relevant, so the amount of 
information needed for optimal prediction is just equal to the amount of infor-
mation needed to specify the current state. One thus has the nice feeling that 
both highly random (IID) and highly ordered (low-period deterministic) se-
quences are of low complexity, and more interesting cases can get high scores. 
 More formally, any predictor f will translate the past of the sequence x– into 
an effective state, s = f(x–), and then make its prediction on the basis of s. (This 
is true whether f is formally a state-space model or not.) The amount of informa-
tion required to specify the state is H[S]. We can take this to be the complexity 
of f. Now, if we confine our attention to the set  of maximally predictive 
models, we can define what Grassberger called the "true measure complexity" or 
"forecast complexity" of the process as the minimal amount of information 
needed for optimal prediction: 

min [ ( )]
f

C H f X= . [59] 



88 C. R. SHALIZI 

 Grassberger did not provide a procedure for finding the maximally predic-
tive models, nor for minimizing the information required among them. He did, 
however, make the following observation. A basic result of information theory, 
called the data-processing inequality, says that I[A;B] I[f(A);B], for any vari-
ables A and B—we cannot get more information out of data by processing it than 
was in there to begin with. Since the state of the predictor is a function of the 
past, it follows that I[X–;X+] I[f(X–);X+]. Presumably, for optimal predictors, the 
two informations are equal—the predictor's state is just as informative as the 
original data. (Otherwise, the model would be missing some potential predictive 
power.) But another basic inequality is that H[A] I[A;B]—no variable contains 
more information about another than it does about itself. So, for optimal models, 
H[f(X–)] I[X–;X+]. The latter quantity, which Grassberger called the effective
measure complexity, can be estimated purely from data, without intervening 
models. This quantity—the mutual information between the past and the fu-
ture—has been rediscovered many times, in many contexts, and called excess 
entropy (in statistical mechanics), stored information (189), complexity (190–
192), or predictive information (193); the last name is perhaps the clearest. 
Since it quantifies the degree of statistical dependence between the past and the 
future, it is clearly appealing as a measure of complexity. 

Grassberger-Crutchfield-Young Statistical Complexity. The forecasting 
complexity notion was made fully operational by Crutchfield and Young 
(102,194), who provided an effective procedure for finding the minimal maxi-
mally predictive model and its states. They began by defining the causal states
of a process, as follows. For each history x–, there is some conditional distribu-
tion of future observations, Pr(X+|x–). Two histories x1

– and x2

– are equivalent if 
Pr(X+|x1

–) = Pr(X+|x2

–). Write the set of all histories equivalent to x– as [x–]. We 
now have a function  that maps each history into its equivalence class: (x–) = 
[x–]. Clearly, Pr(X+| (x–)) = Pr(X+|x–). Crutchfield and Young accordingly pro-
posed to forget the particular history and retain only its equivalence class, which 
they claimed would involve no loss of predictive power; this was later proved to 
be correct (195, theorem 1). They called the equivalence classes the "causal 
states" of the process, and claimed which these were the simplest states with 
maximal predictive power; this is also was right (195, theorem 2). Finally, one 
can show that the causal states are the unique optimal states (195, theorem 3); 
any other optimal predictor is really a disguised version of the causal states. Ac-
cordingly, they defined the statistical complexity of a process C as the informa-
tion content of its causal states. 
 Because the causal states are purely an objective property of the process 
being considered, C is too; it does not depend at all on our modeling or means of 
description. It is equal to the length of the shortest description of the past that is 
relevant to the actual dynamics of the system. As we argued should be the case 
above, for IID sequences it is exactly 0, and for periodic sequences it is log p.
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One can show (195, theorems 5 and 6) that the statistical complexity is always at 
least as large as the predictive information, and generally that it measures how 
far the system departs from statistical independence. 
 The causal states have, from a statistical point of view, quite a number of 
desirable properties. The maximal prediction property corresponds exactly to 
that of being a sufficient statistic (159); in fact they are minimal sufficient statis-
tics (159,165). The sequence of states of the process form a Markov chain. Re-
ferring back to our discussion of filtering and state estimation (§3.5), one can 
design a recursive filter that will eventually estimate the causal state without any 
error at all; moreover, it is always clear whether the filter has "locked on" to the 
correct state or not. 
 All of these properties of the causal states and the statistical complexity 
extend naturally to spatially extended systems, including, but not limited to, 
cellular automata (196,197). Each point in space then has its own set of causal 
states, which form not a Markov chain but a Markov field, and the local causal 
state is the minimal sufficient statistic for predicting the future of that point. The 
recursion properties carry over, not just temporally but spatially: the state at one 
point, at one time, helps determine not only the state at that same point at later 
times, but also the state at neighboring points at the same time. The statistical 
complexity, in these spatial systems, becomes the amount of information needed 
about the past of a given point in order to optimally predict its future. Systems 
with a high degree of local statistical complexity are ones with intricate spatio-
temporal organization, and, experimentally, increasing statistical complexity 
gives a precise formalization of intuitive notions of self-organization (197). 
 Crutchfield and Young were inspired by analogies to the theory of abstract 
automata, which led them to call their theory, somewhat confusingly, computa-
tional mechanics. Their specific initial claims for the causal states were based 
on a procedure for deriving the minimal automaton capable of producing a given 
family of sequences28 known as Nerode equivalence classing (198). In addition 
to the theoretical development, the analogy to Nerode equivalence-classing led 
them to describe a procedure (102) for estimating the causal states and the -
machine from empirical data, at least in the case of discrete sequences. This 
Crutchfield-Young algorithm has actually been successfully used to analyze 
empirical data, for instance, geomagnetic fluctuations (199). The algorithm has, 
however, been superseded by a newer algorithm that uses the known properties 
of the causal states to guide the model discovery process (105) (see §3.6.3 
above).
 Let me sum up. The Grassberger-Crutchfield-Young statistical complexity 
is an objective property of the system being studied. This reflects the intrinsic
difficulty of predicting it, namely the amount of information that is actually 
relevant to the system's dynamics. It is low both for highly disordered and trivi-
ally ordered systems. Above all, it is calculable, and has actually been calculated 
for a range of natural and mathematical systems. While the initial formulation 
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was entirely in terms of discrete time series, the theory can be extended straight-
forwardly to spatially extended dynamical systems (196), where it quantifies 
self-organization (197), to controlled dynamical systems and transducers, and to 
prediction problems generally (188). 

8.4. Power Law Distributions

 Over the last decade or so, it has become reasonably common to see people 
(especially physicists) claiming that some system or other is complex, because it 
exhibits a power law distribution of event sizes. Despite its popularity, this is 
simply a fallacy. No one has demonstrated any relation between power laws and 
any kind of formal complexity measure. Nor is there any link tying power laws 
to our intuitive idea of complex systems as ones with strongly interdependent 
parts. 
 It is true that, in equilibrium statistical mechanics, one does not find power 
laws except near phase transitions (200), when the system is complex by our 
standard. This has encouraged physicists to equate power laws as such with 
complexity. Despite this, it has been known for half a century (5) that there are 
many, many ways of generating power laws, just as there are many mechanisms 
that can produce Poisson distributions, or Gaussians. Perhaps the simplest one 
is that recently demonstrated by Reed and Hughes (201), namely exponen-
tial growth coupled with random observation times. The observation of power 
laws alone thus says nothing about complexity (except in thermodynamic equi-
librium!), and certainly is not a reliable sign of some specific favored mecha-
nism, such as self-organized criticality (202,203) or highly optimized tolerance 
(204–206). 

8.4.1. Statistical Issues Relating to Power Laws

 The statistics of power laws are poorly understood within the field of com-
plex systems, to a degree that is quite surprising considering how much attention 
has been paid to them. To be quite honest, there is little reason to think that 
many of the things claimed to be power laws actually are such, as opposed to 
some other kind of heavy-tailed distribution. This brief section will attempt to 
inoculate the reader against some common mistakes, most of which are related 
to the fact that a power law makes a straight line on a log-log plot. Since it 
would be impractical to cite all papers that commit these mistakes, and unfair to 
cite only some of them, I will omit references here; interested readers will be 
able to assemble collections of their own very rapidly. 
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Parameter Estimation. Presuming that something is a power law, a natural 
way of estimating its exponent is to use linear regression to find the line of best 
fit to the points on the log-log plot. This is actually a consistent estimator, if the 
data really do come from a power law. However, the loss function used in linear 
regression is the sum of the squared distances between the line and the points 
("least squares"). In general, the line minimizing the sum of squared errors is not
a valid probability distribution, and so this is simply not a reliable way to esti-
mate the distribution.
 One is much better off using maximum likelihood to estimate the 
parameter. With a discrete variable, the probability function is expressed as 

follows: Pr(X = x) = x– / ( ), where ( ) = 
1k

k
=

 is the Riemann zeta 

function, which ensures that the probability is normalized. Thus the maximum 
likelihood estimate of the exponent is obtained by minimizing the negative log-

likelihood, L( ) = i  log xi + log ( ), i.e., L( ) is our loss function. In the 

continuous case, the probability density is (  –1 )c –1/x , with x c > 0. 

Error Estimation. Most programs used to perform linear regression also 
provide an estimate of the standard error in the estimated slope, and one some-
times sees this reported as the uncertainty in the power law. This is an entirely 
unacceptable procedure. Those calculations of the standard error assume that 
measured values having Gaussian fluctuations around their true means. Here 
that would mean that the log of the empirical relative frequency is equal to the 
log of the probability plus Gaussian noise. However, by the central limit theo-
rem, one knows that the relative frequency is equal to the probability plus Gaus-
sian noise, so the former condition does not hold. Notice that one can obtain 
asymptotically reliable standard errors from maximum likelihood estimation. 

Validation, R2. Perhaps the most pernicious error is that of trying to vali-
date the assumption of a power law distribution by either eye-balling the fit to a 
straight line, or evaluating it using the R2 statistic, i.e., the fraction of the vari-
ance accounted for by the least-squares regression line. Unfortunately, while 
these procedures are good at confirming that something is a power law, if it 
really is (low Type I error, or high statistical significance), they are very bad at 
alerting you to things that are not power laws (they have a very high rate of 
Type II error, or low statistical power). The basic problem here is that any
smooth curve looks like a straight line, if you confine your attention to a suffi-
ciently small region—and for some non–power-law distributions, such "suffi-
ciently small" regions can extend over multiple orders of magnitude. 
 To illustrate this last point, consider Figure 5, made by generating 10,000 
random numbers according to a log-normal distribution, with a mean log of 0 
and a standard deviation in the log of 3. Restricting attention to the "tail" of ran-
dom numbers 1, and doing a usual least-squares fit, gives the line shown in 
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Figure 6. One might hope that it would be easy to tell that this data does not 
come from a power law, since there are a rather large number of observations 
(5,112), extending over a wide domain (more than four orders of magnitude). 
Nonetheless, R2 is 0.962. This, in and of itself, constitutes a demonstration that 
getting a high R2 is not a reliable indicator that one's data was generated by a 
power law.29

An Illustration: Blogging. An amusing empirical illustration of the diffi-
culty of distinguishing between power laws and other heavy-tailed distributions 
is provided by political weblogs, or "blogs"—websites run by individuals or 
small groups providing links and commentary on news, political events, and the 
writings of other blogs. A rough indication of the prominence of a blog is pro-
vided by the number of other blogs linking to it—its in-degree. (For more on 
network terminology, see Part II, chapter 4, by Wuchty, Ravasz and Barabási, 
this volume.) A widely read essay by Shirky claimed that the distribution of in-
degree follows a power law, and used that fact, and the literature on the growth 
of scale-free networks, to draw a number of conclusions about the social organi-
zation of the blogging community (207). A more recent paper by Drenzer and 
Farrell (208), in the course of studying the role played by blogs in general politi-
cal debate, re-examined the supposed power-law distribution.30 Using a large 
population of inter-connected blogs, they found a definitely heavy-tailed distri-
bution which, on a log-log plot, was quite noticeably concave (Figure 7); none-
theless, R2 for the conventional regression line was 0.898. 

Figure 5. Distribution of 10,000 random numbers, generated according to a log-normal distri-
bution with E[log X] = 0 and (log X) = 3. 



METHODS AND TECHNIQUES OF COMPLEX SYSTEMS SCIENCE 93

 Maximum likelihood fitting of a power law distribution gave  = –1.30 
0.006, with a negative log-likelihood of 18481.51. Similarly fitting a log-normal 
distribution gave E[log X] = 2.60  0.02 and (log X) = 1.48  0.02, with a 
negative log-likelihood of 17,218.22. As one can see from Figure 8, the log-
normal provides a very good fit to almost all of the data, whereas even the best 
fitting power-law distribution is not very good at all.31

 A rigorous application of the logic of error testing (50) would now consider 
the probability of getting at least this good a fit to a log-normal if the data were 
actually generated by a power law. However, since in this case the data were 
e18481.51–17218.22  13 million times more likely under the log-normal distribution, 
any sane test would reject the power-law hypothesis. 

8.5. Other Measures of Complexity

 Considerations of space preclude an adequate discussion of further 
complexity measures. It will have to suffice to point to some of the leading ones. 
The thermodynamic depth of Lloyd and Pagels (182) measures the amount 
of information required to specify a trajectory leading to a final state, and 
is related both to departure from thermodynamic equilibrium and to retrodiction 
(209). Huberman and Hogg (210), and later Wolpert and Macready (211), 
proposed to measure complexity as the dissimilarity between different levels 
of a given system, on the grounds that self-similar structures are actually very 

Figure 6. Inability of linear regression on log-log plots to correctly identify power law distri-
butions. Simulation data (circles) and resulting least-squares fit (line) for the 5,112 points in 
Figure 5 for which x  1. The R2 of the regression line is 0.962. 
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easy to describe. (Say what one level looks like, and then add that all the rest are 
the same!) Wolpert and Macready's measure of self-dissimilarity is, in turn, 
closely related to a complexity measure proposed by Sporns, Tononi, and 
Edelman (212–214) for biological networks, which is roughly the amount of 
information present in higher-order interactions between nodes which is not 
accounted for by the lower-order interactions. Badii and Politi (10) propose a 
number of further hierarchical scaling complexities, including one that 
measures how slowly predictions converge as more information about the past 
becomes available. Other interesting approaches include the information 
fluctuation measure of Bates and Shepard (215), and the predictability indices 
of the "school of Rome" (216). 

8.6. Relevance of Complexity Measures

 Why measure complexity at all? Suppose you are interested in the patterns 
of gene expressions in tumor cells and how they differ from those of normal 
cells. Why should you care if I analyze your data and declare that (say) healthy 
cells have a more complex expression pattern? Assuming you are not a 
numerologist, the only reason you should care is if you can learn something 
from that number—if the complexity I report tells you something about the 

Figure 7. Empirical distribution of the in-degrees of political weblogs ("blogs"). Horizontal 
axis: number of incoming links d; vertical axis: fraction of all blogs with at least that many 
links, Pr(D d); both axes are on a log-log scale. Circles show the actual distribution; the 
straight line is a least-squares fit to these values. This does not produce a properly normalized 
probability distribution but it does have an R2 of 0.898, despite the clear concavity of the curve. 
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thermodynamics of the system, how it responds to fluctuations, how easy it is to 
control, etc. A good complexity measure, in other words, is one which is 
relevant to many other aspects of the system measured. A bad complexity 
measure lacks such relevance; a really bad complexity measure would be 
positively misleading, lumping together things with no real connection or 
similarity just because they get the same score. My survey here has focused on 
complexity measures that have some claim to relevance, deliberately avoiding 
the large number of other measures which lack it (216). 

9. GUIDE TO FURTHER READING

9.1. General

 There is no systematic or academically detailed survey of the "patterns" of 
complex systems, but there are several sound informal discussions: Axelrod and 
Cohen (218), Flake (219), Holland (220), and Simon (221). The book by Simon, 
in particular, repays careful study. 
 On the "topics," the only books I can recommend are the ones by Boccara 
(222) and Flake (219). The former emphasizes topics from physics, chemistry, 
population ecology, and epidemiology, along with analytical methods, espe-
cially from nonlinear dynamics. Some sections will be easier to understand if 
one is familiar with statistical mechanics at the level of, e.g., (200), but this is 

Figure 8. Maximum likelihood fits of log-normal (solid line) and power law (dashed line) 
distributions to the data from Figure 7 (circles); axes as in that figure. Note the extremely tight 
fit of the log-normal over the whole range of the curve, and the general failure of the power-
law distribution. 
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not essential. It does not, however, describe any models of adaptation, learning, 
evolution, etc. Many of those topics are covered in Flake's book, which however 
is written at a much lower level of mathematical sophistication. 
 On foundational issues about complexity, the best available surveys 
(10,195) both neglect the more biological aspects of the area, and assume ad-
vanced knowledge of statistical mechanics on the part of their readers. 

9.2. Data Mining and Statistical Learning

 There are now two excellent introductions to statistical learning and data 
mining: (223) and (31). The former is more interested in computational issues 
and the initial treatment of data; the latter gives more emphasis to pure statistical 
aspects. Both are recommended unreservedly. Baldi and Brunak (95) introduce 
machine learning via its applications to bioinformatics, and this may be espe-
cially suitable for readers of the present volume. 
 For readers seriously interested in understanding the theoretical basis of 
machine learning, (224) is a good starting point. The work of Vapnik 
(22,225,226) is fundamental; the presentation in (22) is enlivened by many 
strong and idiosyncratic opinions, pungently expressed. (40) describes the very 
useful class of models called "support vector machines," as well as giving an 
extremely clear exposition of key aspects of statistical learning theory. Those 
interested in going further will find that most of the relevant literature is still in 
the form of journals—Machine Learning, Journal of Machine Learning Re-
search (free online at www.jmlr.org), Neural Computation—and especially an-
nual conference proceedings—Computational Learning Theory (COLT), Inter-
national Conference on Machine Learning (ICML), Uncertainty in Artificial 
Intelligence (UAI), Knowledge Discovery in Databases (KDD), Neural Informa-
tion Processing Systems (NIPS), and the regional versions of them (EuroCOLT, 
Pacific KDD, etc.). 
 Much of what has been said about model selection could equally well have 
been said about what engineers call system identification, and in fact is said in 
good modern treatments of that area, of which (227) may be particularly rec-
ommended. 
 In many respects, data mining is an extension of exploratory data analysis; 
the classic work by Tukey (228) is still worth reading. No discussion of drawing 
inferences from data would be complete without mentioning the beautiful books 
by Tufte (229–231). 

9.3. Time Series

 Perhaps the best all-around references for the nonlinear dynamics approach 
are (60) and (232). The former, in particular, succeeds in integrating standard 
principles of statistical inference into the nonlinear dynamics method. (73), 
while less advanced than those two books, is a model of clarity, and contains an 
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integrated primer on chaotic dynamics besides. Ruelle's little book (16) is much
more subtle than it looks, full of deep insights. The SFI proceedings volumes 
(233,234) are very worthwhile. The journals Physica D, Physical Review E, and 
Chaos often have new developments. 
 From the statistical wing, one of the best recent textbooks is (55); there are 
many, many others. That by Durbin and Koopman (60) is particularly strong on 
the state-space point of view. The one by (235) Azencott and Dacunha-Castelle 
is admirably clear on both the aims of time series analysis, and the statistical 
theory underlying classical methods; unfortunately it typography is less easy to 
read than it should be. (236) provides a comprehensive and up-to-date view of 
the statistical theory for modern models, including strongly nonlinear and non-
Gaussian models. While many of the results are directly useful in application, 
the proofs rely on advanced theoretical statistics, in particular the geometric 
approach pioneered by the Japanese school of Amari et al. (237). This informa-
tion geometry has itself been applied by Ay to the study of complex systems 
(238,239). 
 At the interface between the statistical and the dynamical points of view, 
there is an interesting conference proceedings (240) and a useful book by Tong 
(241). Pearson's book (242) on discrete-time models is very good on many im-
portant issues related to model selection, and exemplifies the habit of control 
theorists of cheerful stealing whatever seems helpful. 

Filtering. Linear filters are well-described by many textbooks in control 
theory (e.g., (243)), signal processing, time series analysis (e.g., (55)), and sto-
chastic dynamics (e.g., (58)). 
 (89) provides a readable introduction to optimal nonlinear estimation, draws 
interesting analogies to nonequilibrium statistical mechanics and turbulence, and
describes a reasonable approximation scheme. (90) is an up-to-date textbook, 
covering both linear and nonlinear methods, and including a concise exposition 
of the essential parts of stochastic calculus. The website run by R.W.R. Darling, 
www.nonlinearfiltering.webhop.net, provides a good overview and extensive 
pointers to the literature. 

Symbolic Dynamics and Hidden Markov Models. On symbolic dynam-
ics, formal languages and hidden Markov models generally, see (10). (198) is a 
good first course on formal languages and automata theory. Charniak is a very 
readable introduction to grammatical inference. (244) is an advanced treatment 
of symbolic dynamics emphasizing applications; by contrast, (116) focuses on 
algebraic, pure-mathematical aspects of the subject. (163) is good on the sto-
chastic properties of symbolic-dynamical representations. Gershenfeld (245) 
gives a good motivating discussion of hidden Markov models, as does Baldi and 
Brunak (95), while (94) describes advanced methods related to statistical signal 
processing. Open-source code for reconstructing causal-state models from state 
is available from http://bactra.org/CSSR. 
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9.4. Cellular Automata

General. There is unfortunately no completely satisfactory unified treat-
ment of cellular automata above the recreational. Ilachinski (246) attempts a 
general survey aimed at readers in the physical sciences, and is fairly satisfac-
tory on purely mathematical aspects, but is more out of date than its year of pub-
lication suggests. Chopard and Droz (247) has good material on models of 
pattern formation missing from Ilachinski, but the English is often choppy. Tof-
foli and Margolus (248) is inspiring and sound, though cast on a piece of hard-
ware and a programming environment that are sadly no longer supported. Much 
useful material on CA modeling has appeared in conference proceedings (249–
251).

CA as Self-Reproducing Machines. The evolution of CA begins in (252), 
continues in (253), and is brought up to the modern era in (254); the last is a 
beautiful, thought-provoking and modest book, sadly out of print. The modern 
era itself opens with (255). 

Mathematical and Automata-Theoretic Aspects. Many of the papers in 
(256) are interesting. Ilachinski (146), as mentioned, provides a good survey. 
The Gutowitz volume (250) has good material on this topic, too. (257) is up-to-
date. 

Lattice gases. (124) is a good introduction, and (258) somewhat more ad-
vanced. The pair of proceedings edited by Doolen (259,260) describe many in-
teresting applications, and contain useful survey and pedagogical articles. (There 
is little overlap between the two volumes.) 

9.5. Agent-Based Modeling

 There do not seem to be any useful textbooks or monographs on agent-
based modeling. The Artificial Life conference proceedings, starting with (255), 
were a prime source of inspiration for agent-based modeling, along with the 
work of Axelrod (261). (262) is also worth reading. The journal Artificial Life
continues to be relevant, along with the From Animals to Animats conference 
series. Epstein and Axtell's book (263) is in many ways the flagship of the 
"minimalist" approach to ABMs; while the arguments in its favor (e.g., 
(264,265)) are often framed in terms of social science, many apply with equal 
force to biology.32 (266) illustrates how ABMs can be combined with extensive 
real-world data. Other notable publications on agent-based models include 
(267), spanning social science and evolutionary biology, (268) on agent-based 
models of morphogenesis, and (269) on biological self-organization. 
 (131) introduces object-oriented programming and the popular Java pro-
gramming language at the same time; it also discusses the roots of object-
orientation in computer simulation. There are many, many other books on ob-
ject-oriented programming. 
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9.6. Evaluating Models of Complex Systems

 Honerkamp (58) is great, but curiously almost unknown. Gershenfeld (245) 
is an extraordinary readable encyclopedia of applied mathematics, especially 
methods which can be used on real data. Gardiner (270) is also useful. 

Monte Carlo. The old book by Hammersley and Handscomb (140) is con-
cise, clear, and has no particular prerequisites beyond a working knowledge of 
calculus and probability. (271) and (272) are both good introductions for readers 
with some grasp of statistical mechanics. There are also very nice discussions in 
(58,31,142). Beckerman (143) makes Monte Carlo methods the starting point for 
a fascinating and highly unconventional exploration of statistical mechanics, 
Markov random fields, synchronization, and cooperative computation in neural 
and perceptual systems. 

Experimental design. Bypass the cookbook texts on standard designs, and 
consult Atkinson and Donev (155) directly. 

Ecological inference. (273) is at once a good introduction, and the source 
of important and practical new methods. 

9.7. Information Theory

 Information theory appeared in essentially its modern form with Shannon's 
classic paper (274), though there had been predecessors in both communications 
(275) and statistics, notably Fisher (see Kullback (159) for an exposition of 
these notions), and similar ideas were developed by Wiener and von Neumann, 
more or less independently of Shannon (56). Cover and Thomas (158) is, de-
servedly, the standard modern textbook and reference; it is highly suitable as an 
introduction, and handles almost every question most users will, in practice, 
want to ask. (276) is a more mathematically rigorous treatment, now free online. 
On neural information theory, (172) is seminal, well-written, still very valuable, 
and largely self-contained. On the relationship between physics and information, 
the best reference is still the volume edited by Zurek (12), and the thought-
provoking paper by Margolus. 

9.8. Complexity Measures

 The best available survey of complexity measures is that by Badii and Politi 
(10); the volume edited by Peliti and Vulpiani (277), while dated, is still valu-
able. Edmonds (278) is an online bibliography, fairly comprehensive through 
1997. (195) has an extensive literature review. 
 On Kolmogorov complexity, see Li and Vitanyi (177). While the idea of 
measuring complexity by the length of descriptions is usually credited to the trio 
of Kolmogorov, Solomonoff, and Chaitin, it is implicit in von Neumann's 1949 
lectures on the "Theory and Organization of Complicated Automata" (252, Part 
I, especially pp. 42–56). 
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 On MDL, see Rissanen's book (185), and Grünwald's lecture notes (270). 
Vapnik (22) argues that when MDL converges on the optimal model, SRM will 
too, but he assumes independent data. 
 On statistical complexity and causal states, see (195) for a self-contained 
treatment, and (188) for extensions of the theory. 
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11. NOTES

 1. Several books pretend to give a unified presentation of the topics. To 
date, the only one worth reading is (222), which however omits all models of 
adaptive systems. 
 2. Not all data mining is strictly for predictive models. One can also mine 
for purely descriptive models, which try to, say, cluster the data points so that 
more similar ones are closer together, or just assign an overall likelihood score. 
These, too, can be regarded as minimizing a cost function (e.g., the dissimilarity 
within clusters plus the similarity across clusters). The important point is that 



METHODS AND TECHNIQUES OF COMPLEX SYSTEMS SCIENCE 101

good descriptions, in this sense, are implicitly predictive, either about other as-
pects of the data or about further data from the same source. 
 3. A subtle issue can arise here, in that not all errors need be equally bad for 
us. In scientific applications, we normally aim at accuracy as such, and so all 
errors are equally bad. But in other applications, we might care very much about 
otherwise small inaccuracies in some circumstances, and shrug off large inaccu-
racies in others. A well-designed loss function will represent these desires. This 
does not change the basic principles of learning, but it can matter a great deal for 
the final machine (280). 
 4. Here and throughout, I try to follow the standard notation of probability 
theory, so capital letters (X, Y, etc.) denote random variables, and lower-case 
ones particular values or realizations—so X = the role of a die, whereas x = 5 
(say). 
 5. This is called the convergence in probability of ˆ( )L  to its mean value. 
For a practical introduction to such convergence properties, the necessary and 
sufficient conditions for them to obtain, and some thoughts about what one can 
do, statistically, when they do not, see (51). 
 6. The precise definition of the VC dimension is somewhat involved, and 
omitted here for brevity's sake. See (224,40) for clear discussions. 
 7. For instance, one can apply the independent-sample theory to learning 
feedback control systems (281). 
 8. Actually, the principle goes back to Aristotle at least, and while Occam 
used it often, he never used exactly those words (282, translator's introduction). 
 9. This is very close to the notion of the power of a statistical hypothesis 
test (283), and almost exactly the same as the severity of such a test (50). 
 10. One could, of course, build a filter that uses later y values as well; this is 
a non-causal or smoothing filter. This is clearly not suitable for estimating the 
state in real time, but often gives more accurate estimates when it is applicable. 
The discussion in the text generally applies to smoothing filters, at some cost in 
extra notation. 
 11. Equivalent terms are future-resolving or right-resolving (from nonlin-
ear dynamics) and deterministic (the highly confusing contribution of automata 
theory). 
 12. Early publications on this work started with the assumption that the dis-
crete values were obtained by dividing continuous measurements into bins of 
width , and so called the resulting models " -machines." This name is unfortu-
nate: that is usually a bad way of discretizing data (§3.6.4); the quantity  plays 
no role in the actual theory, and the name is more than usually impenetrable to 
outsiders. While I have used it extensively myself, it should probably be 
avoided. 
 13. An alternate definition (10) looks at the entropy rate (§7) of the symbol 
sequences: a generating partition is one that maximizes the entropy rate, which 
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is the same as maximizing the extra information about the initial condition x
provided by each symbol of the sequence (x).
 14. Quantum versions of CA are an active topic of investigation, but 
unlikely to be of biological relevance (246). 
 15. In a talk at the Santa Fe Institute, summer of 2000; the formula does not 
seem to have been published. 
 16. A simple argument just invokes the central limit theorem. The number 
of points falling within the shaded region has a binomial distribution, 
with success parameter p, so asymptotically x/n has a Gaussian distribution 
with mean p and standard deviation (1 ) /p p n . A nonasymptotic result 
comes from Chernoff's inequality (281), which tells us that, for all n, we have 
Pr(|x/n – p| ) < 2e–2n 2.
 17. The chain needs to be irreducible, meaning one can go from any point to 
any other point, and positive recurrent, meaning that there's a positive probabil-
ity of returning to any point infinitely often. 
 18. Unless our choices for the transition probabilities are fairly perverse, the 
central limit theorem still holds, so asymptotically our estimate still has a Gaus-
sian distribution around the true value, and still converges as N–1/2 for large 
enough N, but determining what's "large enough" is trickier. 
 19. An important exception is the case of equilibrium statistical mechanics, 
where the dynamics under the Metropolis algorithm are like the real dynamics. 
 20. For a pedagogical discussion, with examples, of how compression algo-
rithms may be misused, see http://bactra.org/notebooks/cep-gzip.html. 
 21. The issue of what language to write the program in is secondary; writing 
a program to convert from one language to another just adds on a constant to the 
length of the overall program, and we will shortly see why additive constants are 
not important here. 
 22. Very short programs can calculate  to arbitrary accuracy, and the 
length of these programs does not grow as the number of digits calculated does. 
So one could run one of these programs until it had produced the first two quad-
rillion digits, and then erase the first half of the output, and stop. 
 23. (167) is perhaps the most notorious; see (168) and especially (169) for 
critiques. 
 24. It is certainly legitimate to regard any dynamical process as also a com-
putational process, (284–286,195), so one could argue that the data are produced 
by some kind of program. But even so, this computational process generally 
does not resemble that of the minimal Kolmogorov program at all. 
 25. It is important to note (185, ch. 3) that if we allowed any possible model 
in , finding the minimum would, once again, be incomputable. This restriction 
to a definite, perhaps hierarchically organized, class of models is vitally impor-
tant. 
 26. Take our favorite class of models, and add on deterministic models that 
produce particular fixed blocks of data with probability 1. For any of these mod-



METHODS AND TECHNIQUES OF COMPLEX SYSTEMS SCIENCE 103

els , L(x, ) is either 0 (if x is what that model happens to generate) or . Then, 
once we have our data, and find a  that generates that and nothing but that, rear-
range the coding scheme so that D( , ) = 1; this is always possible. Thus, 
CSC(x, ) = 1 bit. 
 27. This does not contradict the convergence result of the last paragraph; 
one of the not-too-onerous conditions mentioned in the previous paragraph is 
that the coding scheme remain fixed, and we're violating that. 
 28. Technically, a given regular language (§3.6). 
 29. If I replace the random data by the exact log-normal probability distri-
bution over the same range, and do a least-squares fit to that, the R2 actually in-
creases, to 0.994. 
 30. Professors Drenzer and Farrell kindly shared their data with me, but the 
figures and analysis that follow are my own. 
 31. Note that the log-normal curve fitted to the whole data continues to 
match the data well even in the tail. For further discussion, omitted here for rea-
sons of space, see http://bactra.org/weblog/232.html. 
 32. In reading this literature, it may be helpful to bear in mind that by 
"methodological individualism," social scientists mean roughly what biologists 
do by "reductionism." 
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