
Analyzing Values Below the Method
Detection Limit Using R

Carolyn Huston
Simon Fraser University

AQ 3148

February 17, 2008

1 / 46

More on R

Jumping Into Part II!

2 / 46

Data

Statistics is about the analysis of data. Data

can be stored as an object in R. Because R is

mainly a statistical program, it provides lots

of functions to store, manipulate, and

perform statistical analysis on all sorts of

data. There are several types of data objects

in R that we will be discussing.

3 / 46

More on Objects

A question for you!

4 / 46

Question

Are any of you thinking right now ‘Carolyn

has been going on and on about objects and

functions, and I kind of get it, but.....

HUH???’

5 / 46

Question

If this is you, please think of an object in the

everyday world and raise your hand. We can

use this example to discuss the conceptual

similarities between how objects are used in

the everyday world, and how objects are used

in an R workspace.

6 / 46

...And now back to data
objects!

7 / 46

Vectors

A vector is simply a collection of numbers.

Vectors can be a convenient way to store a

series of data, for example a list of

measurements. Vectors are basically a data

set where we have a univariate measurement,

with no covariates. For example, a long row

of solute concentration values.

8 / 46

Vectors

In R, vectors are a type of data object. To create a
vector in R, use the c() function (c stands for
‘concatenate’)(To concatenate is to link things
together in a chain or series).

For example,

>x=c(2,3,5,7) #1st 4 prime numbers

>x

[1] 2 3 5 7

9 / 46

Vectors

Functions and logical operators that we talked
about before break will work on each element of the
vector.

>x^2

[1]4 9 25 49

>log(x)

[1]0.693 1.098 1.609 1.9459

>x>5

[1]FALSE FALSE FALSE TRUE

10 / 46

Vectors

Two vectors can be combined using arithmetic
functions, element by element:

>y=c(1,2,3,4)

>x+y #adding elements

[1]3 5 8 11

>x*y #multiplying elements

[1]2 6 15 28

>x==y #comparing elements

[1]FALSE FALSE FALSE FALSE

11 / 46

When two vectors have different lengths, the shorter
one is repeated to match the longer one. This is
called the recycling rule. If the length of the shorter
vector is not a multiple of the length of the other, R
will print a warning.

>y=c(1,2)

>x+y #adding elements

[1]3 5 6 9

Here, x is of length 4 while y is of length 2. To
produce x+y, the variable y is repeated to make
c(1,2,1,2), and then added to x as usual.

This can cause mistakes if you are not used to it!!

12 / 46

Shortcuts For Creating Vectors

13 / 46

Creating Vectors

You might often need to create a vector that

is a sequence of numbers, or perhaps create

a vector where all the elements are the same.

There are several shortcuts in R available to

help you do this.

14 / 46

Creating Vectors

To create a list of numbers between 10 and 50, we could use
>x=10:50

[1] 10 11 12 13 14 15 16 17 18 19 20 21 22
[14] 23 24 25 26 27 28 29 30 31 32 33 34 35
[27] 36 37 38 39 40 41 42 43 44 45 46 47 48
[40] 49 50

The numbers in square brackets tell you which elements of the
vector starts a new line. The first line starts with the first [1]
element (10). The second line starts with the 14th element (23),
etc. This is why R has previously put a [1] before our output; if the
answer is a single number then it is a vector of length 1.

15 / 46

Creating Vectors

You can create the same vector using the seq() function

>seq(from=10, to=50, by=1)

This creates a sequence of numbers between 10 and 50
inclusive, incrementing by 1 each time. Alternatively, you can
specify how many numbers you want in the result; numbers
will automatically be equally spaced.

>seq(from=10, to=50, length=41)

>seq(from=10, to=50,length=40)

The result need not be in integer values!!

16 / 46

Creating Vectors

Another useful function that can be used to create
vectors is rep(). This creates a vector by repeating
a number (or sequence of numbers) a specified
amount. For example, to repeat the number 3, 5
times

>rep(x=3,times=5)

[1] 3 3 3 3 3

17 / 46

Creating Vectors

An interesting feature of the function rep() is that
the value to be repeated can also be a vector. If
this is the case, we can use the argument each to
represent the number of times to repeat each
element of the vector. For example

>rep(x=1:3,each=3)

[1] 1 1 1 2 2 2 3 3 3

18 / 46

Creating Vectors

In my text I say that being able to use functions like
seq(), and rep() are useful. What about you, can
you see any applications for this type of function?

19 / 46

Manipulating Vectors

20 / 46

Manipulating Vectors

R allows you to manipulate vectors in many ways.
You can extract a particular element of a vector
using square brackets, [].

>x=1:5

Extract the 3rd element of x
>x[3]

[1] 3

Extract everything but the 3rd element of x
>x[-3]

[1] 1 2 4 5

21 / 46

Manipulating Vectors

Continuing from the previous slide..

Change the 3rd element of x to 10
>x[3]=10

[1] 1 2 10 4 5

Use another vector, i, to extract a list of elements
>i=c(1,3,5)

>x[i]

[1] 1 10 5

22 / 46

Manipulating Vectors

Continuing some more...

Extract all the elements except those in i
>x[-i]

[1] 2 4

Add a new element (to the end of x)
>x[6]=6

>x

[1] 1 2 10 4 5 6

Another way to add a new element, using c()

>x=c(x,7)

>x

[1] 1 2 10 4 5 6 7

23 / 46

Manipulating Vectors

A useful function is the which(logical)

function. This function evaluates a logical

expression. The logical expression creates a

vector of TRUE and FALSE. The function

which() reports the position of elements

that are TRUE.

24 / 46

Manipulating Vectors

>x=c(10,7,9,10,12,9,10)

A logical expression returning TRUE and FALSE
>x==10

[1] TRUE FALSE FALSE TRUE TRUE FALSE FALSE

[8] TRUE

The location of the elements equalling 10
>which(x==10)

[1] 1 4 5 8

25 / 46

Manipulating Vectors

A new vector, y where elements equalling 10 have
been extracted
>y=x[which(x==10)] #NB!!

[1] 10 10 10 10

Values of x which are less than 10
>x[which(x<10)]

[1] 7 9 9

26 / 46

Functions of Vectors

Earlier, we saw and used some mathematical

functions that could also be applied to

vectors. These functions calculate a value for

each element of a vector. There are also

some useful functions that work on the whole

vector to provide a single answer. A table of

these functions is shown on the next page.

27 / 46

Functions of Vectors

Function Name Value returned
length() The number of elements
max() The largest value
min() The smallest value
sum() The sum of the elements
prod() The product of the elements
mean() The mean of the elements
sd() The standard deviation of the elements
var() The variance of the elements
. . . And lots lots more

28 / 46

Functions of Vectors

For example, to find the length of a vector,

use the length() function

>length(x)

[1] 8

29 / 46

Data Frames

A data frame is another type of data object in R. It
is used to store complete datasets. For example, if
there was a dataset representing the heights and
weights of 10 different people, the data frame in R
will be a table with 10 rows, one per person, and 2
columns, one for weight and one for height. Data
frames can also have row and column labels, making
them ideal for storing datasets. Information in a
data frame is much like you would see in a
spreadsheet. There is one column for each variable,
and one row for each observation. Different types of
data can also be stored (ie. words).

30 / 46

Data Frames

For example, height and weight data might be
stored in a data frame called hgtdata:
>hgtdata

height weight
1 169 61
2 167 69
3 166 70
4 172 76
5 162 60
6 185 58
7 165 61
8 171 72
9 170 55
10 163 63

31 / 46

Data Frames

You can access the heights vector by itself using the
data name and column name separated by the $
operator:

>hgtdata$height

[1] 169 167 166 172 162 185 165 171 170 163

32 / 46

Data Frames

Once you have accessed the height vector, you can
use the functions that we have learned about
previously. For example
>mean(hgtdata$height)

[1] 169

33 / 46

Data Frames

Data rows, columns, and individual values can all be
accessed using square brackets, [], similar to what
we saw with vectors.

To access row 3, all columns

>hgtdata[3,]

height weight

3 166 70

34 / 46

Data Frames

To access the height column (an alternative to $)

>hgtdata[,1]

[1] 169 167 166 172 162 185 165 171 170 163

To access a specific value in the matrix, for example
the observation in the 5th row and 2nd column
>hgtdata[5,2]

[1] 60

35 / 46

Data Frames

In addition to extracting rows, columns, and values
that can be used in functions, there are also some
functions that can be applied to the data frame
itself.

The names() function will give you the names of
the columns. Notice the quotations around the
words.
>names(hgdata)

[1] "height" "weight"

36 / 46

File Input and Output

37 / 46

Entering Data

Often you will read data that comes from another
source, for example that has been typed into an
Excel spreadsheet. If the data is stored in a text file,
you can read it into R using the read.table()

function. It is straightforward to save an Excel
spreadsheet as a text file, so this is my preferred
method to import data into R. Some alternative
methods to import files into R from Excel are
offered in the guidance document.

The read.table() function has many optional
arguments depending on how the data is written in
the file. However, the basic function is simple.

38 / 46

Entering Data

>data=read.table("h:/hgtdata.csv")

Data can also have .dat, and .txt extensions. Using
a .doc or .rtf extension will not work, because such
files have embedded formatting that R does not like.

By default, when reading in data using
read.table"(), each variable(column) will be
labelled V1, V2, . . .

39 / 46

Entering Data

If a data file you are using specifies the column
names in the first line, you can get R to use the
labels by using the argument header==TRUE

>data=read.table("h:/hgtdata.csv",

header=TRUE)

Another EXTREMELY useful option is to specify
what character has been used to separate one
variable from the next. Often, a comma is used

>data=read.table("h:/hgtdata.csv",

header=TRUE, sep=",")

40 / 46

Entering Data

If the data are in a tab-separated

(tab-delimited) text (.txt) file, use the

special character combination ‘\t’. Any

other separation formats can be written as

they are found.

41 / 46

Entering Data

Another very useful argument for read.table() is
colClasses. This allows you to specify the data
type of the different columns that are being read
into R, which can be useful if you have a factor
column that has been entered as 1’s, 2’s, etc. Data
can be of multiple different ‘types’, including
numeric, logical, factor, etc.

>data=read.table("h:/hgtdata.csv",

header=TRUE, sep=",",

colClasses=c("numeric","numeric")

42 / 46

Entering Data

There are other arguments that can be used

in the read.table() function, but I have

tried to outline those that are the most

useful. You can use the help files to learn

about other options when reading in data.

43 / 46

Writing Data

If you have a data frame you want to save to a file,
you can use the function write.table(). Again,
this command has many options. To save a data
frame in the same format as I have been reading
them in, you can use the following commands.

>data=write.table(hgtdata,

file="h:hgtdata.csv",col.names=T, sep=",")

For unexplained reasons, write.table() uses the
option col.names instead of header to indicate
that column names are present in the file.

44 / 46

Recording Output

Usually R output prints directly to the screen. You
can use the sink() command so that R prints
results to a file instead.

Creates new file in the h: directory
>sink("h:/results.r")

No output to screen, just to h:
>mean(x)

Closing the file
sink()

This output will appear on screen
>mean(x)

45 / 46

Now for some exercises!!

46 / 46

